6章 設計計算例

6.1 新設橋脚基礎の基礎杭

6.1.1 概 要

図-6.1.1 に示すような新設の橋梁基礎に STMP タイプⅡを適用させるものとする。施工条件として用 地境界等が近接する狭隘場所と仮定し、また、基礎杭には比較的大きな支持力が必要となるため、基礎 杭工法として STMP タイプⅡを選定するものとした。

設計は、「日本道路協会:道路橋示方書IV下部構造編」」に準じて行うものとする。なお、ここではフ ーチングや橋脚躯体の設計については省略することとする。

図-6.1.1 橋脚基礎(STMP タイプⅡによる杭基礎形式)構造一般図

表-6.1.1 地盤条件								
	地盤の	層厚	平均	粘着力 C	せん断抵抗	単位体積重量	畫 (kN/m ²)	
	種類	(m)	N值	(kN/m^2)	角φ(°)	γs	$\gamma s'$	
第1層	粘性土	2.5	5	30	0	17	8	
第2層	砂質土	2.5	10	0	27	17	8	
第3層	粘性土	3.0	5	30	0	17	8	
第4層	砂質土	6.0	20	0	30	19	10	
第5層	砂質土	1.0	50	0	40	18	10	

6.1.2 設計条件

(1) 下部構造

橋脚形式:鋼製T型橋脚 基礎形式:STMPタイプⅡによる杭基礎形式 重要度の区分:B種の橋 地域区分:A地域 耐震設計上の地盤種別:Ⅱ種地盤

(2) 地盤条件

図-6.1.1、表-6.1.1に示す。橋に影響を与える液状化は生じない。

(3) 杭基礎諸元

表-6.1.2 に STMP タイプⅡによる杭基礎の諸元を示す。

基礎	č 杭工法	ST マイクロパイル工法 タイプ II
杭	長	L=16.0m(鋼管長 15.5m)
杭	本 数	25本
改白体	改良体造成径	改良体造成径 D_c =800mm
以尺件	改良体強度	砂質土 q_u =4N/mm ² ,粘性土 q_u =2N/mm ² ,支持層(砂礫) q_u =10N/mm ²
	鋼管諸元 ※	機械構造用高張力鋼管 HT780,鋼管径 D_s 267.4mm,肉厚 t 12.0mm
	節加工	ビード溶接による節突起加工 節加工間隔 <i>p</i> =200mm、節高さ <i>h</i> =2.5mm
鋼管	鋼管設計定数 (腐食しろ 1mm 考慮)	弾性係数 $E = 2.0 \times 10^5 \text{ N/mm}^2$ 断面積 $A = 8.791 \times 10^3 \text{ m}^2$, 断面係数 $Z = 5.369 \times 10^4 \text{ m}^3$, 断面 2 次モーメント $I = 7.125 \times 10^5 \text{ m}^4$, 曲げ剛性 $EI = 14,251 \text{ kN} \cdot \text{m}^2$
ガラウト	グラウト強度	設計基準強度 30N/mm ²
979F	削 孔 径	グラウト体の外径 D_g = 294mm
杭頭	結合方法	支圧板方式による杭頭固定結合

表-6.1.2 杭諸元一覧

6.1.3 常時・レベル1地震時の設計

- (1) 基本条件
 - 1) 設計外力

表-6.1.3 にフーチング底面における設計外力を示す。

		鉛直荷重	水平荷重	モーメント
		V_o (kN)	H_o (kN)	M_o (kN · m)
۲ F	常 時	28,321	0	0
レベル1 地震時	橋軸方向(k _h =0.25)	24,821	5,116	43,436
(震度法)	橋軸直角方向(k _h =0.23)	24,821	4,734	45,859

表-6.1.3 フーチング底面における設計外力

2) 許容応力度

表-6.1.4 に許容応力度の一覧を示す。

			許容	応力度	
大別	応力度の種類	単位	常時	地震時 (震度法)	備考
フーチング	許容支圧応力度 σ_{ca}	N/mm ²	12	18	$0.5 \sigma_{ck}$
$(\sigma_{ck} = 24$ N/mm ²)	許容押抜きせん断応力度 τ_a	N/mm ²	().9	地震時の割増なし
鋼管	許容引張応力度	N/mm ²	355	530	
(機械構造用	許容圧縮応力度	N/mm ²	355	530	表-2.6.1
高張力鋼管 HT780)	許容せん断応力度	N/mm ²	200	300	

表-6.1.4 各許容応力度

(2) 許容支持力の算定

1) 極限押込み支持力の推定

①極限押込み支持力Ruの推定

地盤から決まる単杭の極限押込み支持力は、式(6.1.1)によって推定する。

 $R_u = U_c \sum L_i \tau_{ci} + q_d \cdot A_c \qquad (6.1.1)$

- ここに、
 - R_u: 地盤から決まる杭の極限押込み支持力(kN)
 - U_c : 改良体の周長 (m) = $D_c \times \pi$ (D_c : 改良体造成径 (m)) = $0.8 \times \pi$ = 2.513m
 - L_i:周面摩擦力を考慮する層の層厚(m)

ただし、杭頭から $1/\beta$ 範囲は周面摩擦抵抗を無視することとし、第1層目の層厚 L_1 は2.5m – 1.6m = 0.9mとする(常時の $1/\beta$ =1.528m、地震時の $1/\beta$ =1.285mより、周面摩擦抵抗を無視する範囲を簡便に 1.6m と統一した)。

τ_{ci}:周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)

- ここに、 砂質土 $\tau_{ci} = 5N$ (≤ 200)
 - 粘性土 $\tau_{ci} = C$ または10N (\leq 150)

q_d:改良体先端における単位面積当たりの極限支持力度(kN/m²)

- ここに、支持層が砂礫地盤であるため $q_d = 2,500 \text{ kN/m}^2$ とする。
- A_c : 改良体先端面積 (m²) = $\pi D_c^2 / 4 = 0.8^2 \times \pi / 4 = 0.503 \text{m}^2$
- D_c : 改良体造成径 (m) = 0.8m

表-6.1.5 に周面摩擦力の推定表を示す。

	土質	層厚 <i>L_i</i> (m)	平均 N 値 <i>N</i>	周面摩擦力度 τ _{gi} (kN/m ²)	$l_i au_{gi}$ (kN/m)	U _c (m)	$U_c l_i au_{gi} \ (\mathrm{kN})$
1層目	粘性土	0.9	5	50	45	2.513	113
2 層目	砂質土	2.5	10	50	125	2.513	314
3層目	粘性土	3.0	5	50	150	2.513	377
4 層目	砂質土	6.0	20	100	600	2.513	1,508
5 層目	砂質土	1.0	50	200	200	2.513	503
	計	13.4					2,815

表-6.1.5 周面摩擦力の推定表

したがって、杭の極限押込み支持力Ruは、以下のように推定される。

$$R_u = U_c \sum L_i \tau_{ci} + q_d \cdot A_c = 2,815 + 2,500 \times 0.503 = 4072 kN$$

②極限押込み支持力に対する杭各部の耐力照査

a. 節突起付き鋼管の付着耐力 R_{FU}

$$R_{FU} = \sum \tau_{fi} \times L_i \times U_s \qquad (6.1.2)$$

- ここに、
 - $\begin{array}{rcl} R_{FU} & : 節突起付き鋼管の付着耐力 (kN) \\ \tau_{fi} & : 各層の鋼管の最大付着応力度 (kN/m^2) \\ & \tau_{fi} = \left(274.94 \frac{h}{p} + 9.0683 \right) \times \sqrt{q_u} & \cdots & \Rightarrow (fg \ 3.3.4) \ \# fg \ m = 0.0025m \\ & h & : 節加工 (ビード溶接) 高さ (m) = 0.0025m \\ & p & : 節加工間隔 (m) = 0.2m \\ & q_{ui} & : 各層の改良体の設計基準強度 (kN/m^2) \\ L_i & : 各層の層厚 (m) \\ U_s & : 鋼管の周長 (m) = D_s \times \pi = 0.2674 \times \pi = 0.840m \\ D_s & : 鋼管径 (m) = 0.2674m \end{array}$

表-6.1.6 に節突起付き鋼管の付着耐力 R_{FU}の計算結果を示す。

	土質	層厚 <i>L_i</i> (m)	改良体設計基 準強度 <i>q_{ui}</i> (kN/m ²)	鋼管の最大付 着応力度 τ _{fi} (kN/m²)	鋼管の周長 <i>Us</i> (m)	$ au_{fi}L_iU_s$ (kN)
1層目	粘性土	0.9	2,000	559	0.840	423
2 層目	砂質土	2.5	4,000	791	0.840	1,661
3 層目	粘性土	3.0	2,000	559	0.840	1,409
4 層目	砂質土	6.0	4,000	791	0.840	3,987
5 層目	砂質土	1.0	10,000	1,251	0.840	1,051
	計	13.4				8,530

表-6.1.6 節突起付き鋼管の付着耐力 R_{FU}

したがって、節突起付き鋼管の付着耐力 RFU は、8,530kN と推定される。

b. グラウトと改良体間のせん断耐力 R_{GU}

 $R_{GU} = \sum \tau_{gi} \times L_i \times U_g \qquad (6.13.)$

ここに、

 D_{g} : グラウト体外径(改良体削孔径) (*m*) = 0.294*m*

表-6.1.7 にグラウトと改良体間のせん断耐力 R_{GU}の計算結果を示す。

	土質	層厚 <i>L_i</i> (m)	改良体設計基 準強度 q _{ui} (kN/m ²)	改良体の最大 せん断強度 τ _{gi} (kN/m ²)	グラウトの 周長 <i>U_g</i> (m)	$ au_{gi}L_iU_g$ (kN)
1層目	粘性土	0.9	2,000	250	0.924	208
2 層目	砂質土	2.5	4,000	500	0.924	1,155
3層目	粘性土	3.0	2,000	250	0.924	693
4層目	砂質土	6.0	4,000	500	0.924	2,771
5 層目	砂質土	1.0	10,000	1,250	0.924	1,155
	計	13.4				5,982

表-6.1.7 グラウトと改良体間のせん断耐力 R_{GU}

したがって、グラウトと改良体間のせん断耐力 R_{GU} は、6,205kN と推定される。

c. 極限押込み支持力 Ru に対する杭各部の耐力照査

極限押込み支持力 R_uに対する杭各部の耐力照査結果を表-6.1.8 に示す。杭各部の耐力は極限押 込み支持力を上回る結果となっている。

 項目
 単位
 値
 適用

 地盤から決まる極限押込み支持力R_u
 kN
 4,072

 節突起付き鋼管の付着耐力R_{FU}
 kN
 8,530
 R_{FU} > R_u

表-6.1.8 極限押込み支持力 R_u に対する杭各部の耐力照査結果

2) 極限引抜き支持力の推定

地盤から決まる単杭の極限引抜き支持力は、式(6.1.5)によって推定する。

 $P_u = U_c \sum_{i} L_i \tau_{ci} \qquad (6.1.5)$

kN

5,982 | $R_{GU} > R_u$

P.::地盤から決まる杭の極限引抜き支持力(kN)

 U_c : 改良体の周長 (m) = $0.8 \times \pi$ = 2.513m

D_c : 改良体造成径 (m) = 0.8m

グラウトと改良体間のせん断耐力RGU

L_i:周面摩擦力を考慮する層の層厚(m)

τ_{ci}:周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)

地盤から決まる極限引抜き支持力は、周面摩擦抵抗の合計であり、表-6.1.5 より 2,815kN と推定 される。 3) 許容支持力の算定

①許容押込み支持力Raの算定

許容押込み支持力は、式(6.1.6)によって算定する。

$$R_a = \frac{\gamma}{n} R_u \qquad (6.1.6)$$

ここに、

Ra : 杭頭における杭の軸方向許容押込み支持力 (kN)

n :安全率(常時:3, レベル1地震時:2)

- γ : 極限支持力推定法の相違による安全率の補正係数(支持力推定式による場合 1.0)
- R_u :地盤から決まる杭の極限押込み支持力 (kN) = 4,072kN

許容押込み支持力 Ra を表-6.1.9 に示す。

	極限支持力 R_u (kN)	安全率 <i>n</i>	補正係数 γ	許容押込み支持力 R _a (kN)
常時	4 079	3	1.0	1,357
レベル1 地震時 (震度法)	4,072	2	1.0	2,036

表-6.1.9 許容押込み支持力R_a

②許容引抜き支持力*Pa*の算定

許容引抜き支持力は、式(6.1.7)によって算定する。

$$P_a = \frac{1}{n} P_u + W \qquad (6.1.7)$$

ここに、

 P_a : 杭頭における杭の軸方向許容引抜き力 (kN)

n : 安全率(常時:6, レベル1地震時:3)

- P_u :地盤から決まる杭の極限引抜き支持力 (kN) = 2,815kN
- W : 杭の有効重量 (kN) = 88kN

許容引抜き支持力 Pa を表-6.1.10 に示す。

表-6.1.10 許容引抜き支持力 Pa

	極限支持力 <i>P</i> "(kN)	杭の有効重量 <i>W</i> (kN)	安全率 <i>n</i>	許容引抜き支持力 <i>Pa</i> (kN)
常時	0.015	88	6	557
レベル1地震時(震度法)	2,815	88	3	1,026

(3)水平方向地盤反力係数k_Hの算定
 水平方向地盤反力係数は以下のように算出する。

$$k_{H} = k_{Ho} \left(\frac{B_{H}}{0.3}\right)^{-3/4} \quad \dots \tag{6.1.8}$$

ここに、

$$k_H$$
 : 水平方向地盤反力係数 (kN/m^3)

$$k_{Ho} = \frac{1}{0.3} \alpha E_o \quad (kN / m^3)$$

- E_o :設計の対象とする位置での地盤の変形係数 (kN/m^2) で、ここでは、N 値から推定する。 $E_o = 2,800N = 2,800 \times 5 = 14,000 \ kN/m^2$ (1/β範囲の平均 N 値 5)
- α :地盤反力係数の推定に用いる係数で、N 値から変形係数 E_o を推定するため、常時1、
 地震時2とする。
- B_H :荷重作用方向に直交する杭の換算載荷幅(m)で、 $\sqrt{D' / \beta}$ とする。
 - D': : 拡径した改良体に期待する杭の水平地盤抵抗幅 (水平抵抗に関する計算上の杭径) (m) で、表・解 3.4.2 より D'=0.500m とする。
 - 1/β : 水平抵抗に関与する地盤の深さ(m)

$$\beta$$
 : 杭の特性値 $4\sqrt{\frac{k_H D'}{4EI}}$ (m⁻¹)

EI : 鋼管の曲げ剛性で、15,037($kN \cdot m^2$)

数回の収束計算によって求めた水平方向地盤反力係数を表-6.1.11に示す。

	E_o (kN/m ²)	α	D' (m)	$\frac{EI}{(kN \cdot m^2)}$	<i>B_H</i> (m)	$egin{array}{c} eta\ (\mathbf{m}^{-1}) \end{array}$	$1 \swarrow \beta$ (m)	k _H (kN/m ³)
常時	14,000	1	0.500	14,251	0.874	0.655	1.528	20,927
地震時	14,000	2	0.500	$14,\!251$	0.874	0.778	1.285	41,855

表-6.1.11 水平方向地盤反力係数

(4) 杭のバネ定数

1) 軸方向バネ定数*K*_vの推定 軸方向バネ定数は、式(6.1.9)によって推定する。

$$K_{\nu} = a \frac{A_p E_p}{L} \tag{6.1.9}$$

ここに、

K_v : 杭の軸方向バネ定数 (kN/m)

- Ap : 鋼管の有効断面積 8.791×10⁻³ (m²)
- *E_p* : 鋼管のヤング係数 2.0×10⁸ (kN/m²)
- L : 鋼管の根入れ長 15.0 (m)
- a :以下により算出する(式(解 3.5.2))。 $a = 0.0165(L/D) + 0.0704 = 0.0165 \times 56.1 + 0.0704 = 0.996$ L:鋼管の根入れ長 15.0 (m), D:鋼管径 0.2674 (m) したがって、 $K_{\nu} = 0.996 \times \frac{8.791 \times 10^{-3} \times 2.0 \times 10^8}{15.0} = 116,748 \, (kN/m) \, となる$ 。

2) 軸直角方向バネ定数の算定

杭の軸直角方向バネ定数 K1~K4は、表・6.1.12のように算出した。なお、ここでは常時には水平・ モーメント荷重が作用しないため、レベル1地震時(震度法)のバネ定数のみを算出している。

軸直角方向バネ		答山士	EI	β (m ⁻¹)	バネ値
区分	単位	昇山八	$(kN \cdot m^2)$	p (III ¹)	八个恒
K_1	KN/m	$4EI\beta^3$	14,251	0.778	26,885
K_2	kN/rad	$2EI\beta^2$	14,251	0.778	17,269
<i>K</i> ₃	kN•m/m	$2EI\beta^2$	14,251	0.778	17,269
K_4	kN • m/rad	2 <i>ΕΙ</i> β	14,251	0.778	22,186

表-6.1.12 軸直角方向バネ定数(レベル1地震時)

(5) 杭頭反力および変位の計算

杭頭反力および変位は、変位法によって計算する。変位法による計算は、図-6.1.2 に示すようにフー チング下面の中心を原点0とし、外力 H_o , V_o , M_o を作用させたときの底版の変位 δ_x , δ_y , α を求める。

図-6.1.2 変位法による計算座標

このとき、原点の変位は、次の三元連立方程式を解いて求められる。

 $\begin{array}{c}
A_{xx}\delta_{x} + A_{xy}\delta_{y} + A_{x\,\alpha}\alpha = H_{o} \\
A_{yx}\delta_{x} + A_{yy}\delta_{y} + A_{y\,\alpha}\alpha = V_{o} \\
A_{\alpha\,x}\delta_{x} + A_{\alpha\,y}\delta_{y} + A_{\alpha\,\alpha}\alpha = M_{o}
\end{array}$ (6.1.10)

フーチングの底面が水平なため、各係数は次式で求められる。

$$A_{xx} = \sum (K_{1} \cos^{2} \theta_{i} + K_{V} \sin^{2} \theta_{i})$$

$$A_{xy} = A_{yx} = \sum (K_{V} - K_{1}) \sin \theta_{i} \cos \theta_{i}$$

$$A_{x\alpha} = A_{\alpha x} = \sum \{(K_{V} - K_{1}) \ x_{i} \sin \theta_{i} \cos \theta_{i} - K_{2} \cos \theta_{i} \}$$

$$A_{yy} = \sum (K_{V} \cos^{2} \theta_{i} + K_{1} \sin^{2} \theta_{i})$$

$$A_{y\alpha} = A_{\alpha y} = \sum \{(K_{V} \cos^{2} \theta_{i} + K_{1} \sin^{2} \theta_{i}) \ x_{i} + K_{2} \sin \theta_{i} \}$$

$$A_{\alpha \alpha} = \sum \{(K_{V} \cos^{2} \theta_{i} + K_{1} \sin^{2} \theta_{i}) \ x_{i}^{2} + (K_{2} + K_{3}) \ x_{i} \sin \theta_{i} + K_{4} \}$$
(6.1.11)

ここに、

$$H_o$$
:フーチングの底面より上に作用する水平荷重(kN)
 V_o :フーチングの底面より上に作用する鉛直荷重(kN)
 M_o :原点0まわりの外力のモーメント(kN.m)
 δ_x :原点0の水平変位(m)
 δ_y :原点0の鉛直変位(m)
 α :フーチングの回転角(rad)
 x_i :i番目の杭の杭頭のx座標(m)
 θ_i :i番目の杭の杭輔が鉛直軸となす角度(度)

以上の計算の結果、求められたフーチングの原点における変位(δ_x , δ_y , α)により、各杭頭に作用する杭軸方向力 P_{Ni} 、杭軸直角方向力 P_{Hi} 、およびモーメント M_{ti} は次式で求まる。

$$P_{Ni} = K_V \delta_{yi}'$$

$$P_{Hi} = K_1 \delta_{xi}' - K_2 \alpha$$

$$M_{ti} = -K_3 \delta_{xi}' + K_4 \alpha$$

$$\delta_{xi}' = \delta_x \cos \theta_i - (\delta_y + \alpha x_i) \sin \theta_i$$

$$\delta_{y_i}' = \delta_x \sin \theta_i + (\delta_y + \alpha x_i) \cos \theta_i$$

$$(6.1.12)$$

ここに、

δ_{xi} : i 番目の杭の杭頭の軸直角方向変位(m)

 δ_{yi} ': i 番目の杭の杭頭の軸方向変位(m)

K_V : 杭の軸方向バネ定数(kN/m)

K1,K2,K3,K4 : 杭の軸直角方向バネ定数

x_i: i 番目の杭の杭頭の x 座標(m)

θ_i: i番目の杭の杭軸が鉛直軸となす角度(度)

P_{Ni}: i 番目の杭の杭軸方向力(kN)

 P_{Hi} : i 番目の杭の杭軸直角方向力(kN)

 M_{ti} : i 番目の杭の杭頭に作用する外力としてのモーメント (kN.m)

1) 各係数

表-6.1.13に変位法に用いる各係数の計算結果を示す。

レベル1 地震時 単位 (橋軸方向、橋軸直角方向) kN/m A_{xx} 672,127 A_{xy}, A_{yx} kN/m 0 $A_{x\alpha}$, $A_{\alpha x}$ kN/rad -431,737 kN/m 2,918,696 A_{yy} $A_{y\alpha}$, $A_{\alpha v}$ kN/rad 0 kN • m/rad $A_{\alpha \ \alpha}$ 23,904,216

表-6.1.13 各係数の計算結果

2) 各杭頭反力および変位の計算結果

変位法によって算出した最前列、最後列の杭頭反力および変位の計算結果を表-6.1.14に示す。

羊日占	亦位一巨力	出任	告 吐	レベル	1 地震時
1日尽	爱恒、汉刀	中心	币吋	橋軸方向	橋軸直角
	水平変位 δ_x	mm	_	8.88	8.37
0 点(底版中心) の変位	鉛直変位 δ_y	mm	9.70	8.50	8.50
	回転角 α	rad	_	0.001978	0.002070
	鉛直反力 P_{Ni}	kN/本	1,133	1,916	1,959
	水平反力 P _{Hi}	kN/本	_	205	189
1 列目 (最前列)	モーメント M_{ti}	kN・m/本	_	-110	-99
	水平変位 δ_x	mm	_	8.88	8.37
	鉛直変位 δ_y	mm	9.70	16.41	16.78
	鉛直反力 P_{Ni}	kN/本	1,133	69	26
	水平反力 P _{Hi}	kN/本	—	205	189
5列目 (最後列)	モーメント M_{ti}	kN・m/本	_	-110	-99
	水平変位 δ_x	mm		8.88	8.37
	鉛直変位 δ_y	mm	9.70	0.59	0.23

表-6.1.14 杭頭反力および変位の計算結果

(6) 杭基礎の安定照査

杭基礎の許容支持力および許容水平変位量の照査結果を表-6.1.15 に示す。各杭頭反力は許容支持力以下であり、水平変位も許容水平変位量(15mm)を満足する結果が得られている。

百 目	封旦	用任	一 一 中	レベル	1 地震時
	百万	中位	市中寸	橋軸方向	橋軸直角
軸方向押込み力	P_N	kN	1,133	1,916	1,959
軸方向許容押込み支持力	R_a	kN	1,357	2,036	2,036
判定			$P_N < R_a$ O.K	$P_N < R_a$ O.K	$P_N < R_a$ O.K
軸方向引抜き力	P_N	kN	_	発生しない	発生しない
軸方向許容引抜き支持力	Pa	kN	_	1,026	1,026
判定			—	$P_N < P_a$ O.K	$P_N < P_a$ O.K
設計地盤面での水平変位	δ_x	mm	_	8.9	8.4
許容水平変位量	δ_a	mm	_	15.0	15.0
判 定			_	$\delta_x < \delta_a$ O.K	$\delta_x < \delta_a$ O.K

表-6.1.15 杭基礎の安定照査結果

(7) 杭体の設計

1) 杭各部の断面力の算定方法

軸直角方向力、杭頭モーメントによって発生する杭体各部の曲げモーメントおよびせん断力は、杭 体を弾性床上のはりとして求める。

常時、レベル1地震時とも*βl*>3(常時:9.7,地震時:11.5)のため、以下に示す半無限長の杭として杭各部の変位、曲げモーメント、せん断力を算出する。なお、杭体の設計用曲げモーメントは 杭頭剛結合の場合と杭頭ヒンジ結合と考えた場合とを比較して大きい方を用いるものとする。

①杭頭剛結合の場合(半無限長杭,土中に埋込まれた杭 (*h*=0))
杭各部の変位 *y* (m)
$$y = \frac{H}{2EI\beta^3}e^{-\beta x}\left[(1+\beta h_o)\cos\beta x - \beta h_o\sin\beta x\right]$$

杭各部の曲げモーメント*M* (kN.m) $M = -\frac{H}{\beta}e^{-\beta x}\left[\beta h_o\cos\beta x + (1+\beta h_o)\sin\beta x\right]$
杭各部のせん断力*S* (kN) $S = -He^{-\beta x}\left[\cos\beta x - (1+2\beta h_o)\sin\beta x\right]$
......(6.1.13)

- H : 杭軸直角方向力(kN)
- M_t : 杭頭の外力としてのモーメント (kN・m)
- β : 杭の特性値 (m⁻¹)
- x : 杭頭からの深度(m)
- $h_o = M_t \swarrow h$ (m)

②杭頭ヒンジ結合の場合(半無限長杭,土中に埋込まれた杭(h=0))

杭各部の変位 y (m)
$$y = \frac{H}{2EI\beta^3} e^{-\beta x} \cos \beta x$$

杭各部の曲げモーメント M (kN・m) $M = -\frac{H}{\beta} e^{-\beta x} \sin \beta x$
杭各部のせん断力 S (kN) $S = -He^{-\beta x} (\cos \beta x - \sin \beta x)$

ここに、

H : 杭軸直角方向力 (kN)

$$M_t$$
 : 杭頭の外力としてのモーメント (kN・m)
 β : 杭の特性値 (m⁻¹)
 x : 杭頭からの深度 (m)
 $h_o = M_t / h$ (m)

2) 杭各部の曲げモーメント・変位分布

(8) 杭体(鋼管)の応力度照査

1) 応力度の照査方法

①曲げ応力度の照査

杭体に作用する軸力および曲げモーメントにより杭体に生じる応力度は式(6.1.15)により算出 し、鋼管の許容応力度内であることを照査する。

$$\sigma = \frac{P_N}{A} \pm \frac{M}{Z} \qquad (6.1.15)$$

ここに、

- σ : 杭体に生じる曲げ応力度 (kN/m²)
- P_N : 杭の軸方向力 (kN)
- A : 鋼管の有効断面積 8.791×10⁻³ (m²)
- M:曲げモーメント(kN・m)(杭頭ヒンジと比較して値の大きい杭頭固定の結果を用いる)
- Z : 鋼管の有効断面係数 5.369×10⁻⁴ (m³)

②せん断応力度の照査

せん断応力度の照査は、道路橋示方書IVを参照し照査するものとする。

2) 応力度の照査結果

曲げ応力度の照査結果を表-6.1.16に、せん断応力度の照査結果を表-6.1.17に示す。

	杭 列	軸力 P_N (kN)	モーメント M (kN・m)	照査側	発生応力度 σ (N/mm ²)	許容応力度 σ _{sa} (N/mm²)	判定
レヘ ル 1	最前列	1.016	110	圧縮側	422	530	$\sigma < \sigma_{sa}$ O.K
地震時 橋軸	(1列目)	1,310	110	引張側	14	530	$\sigma < \sigma_{sa}$ O.K
	最後列 (5 列目)	CO	110	圧縮側	212	530	$\sigma < \sigma_{sa}$ O.K
万问		69		引張側	-196	-530	$\sigma < \sigma_{sa}$ O.K
レヘ ル 1	最前列	1.050	00	圧縮側	407	530	$\sigma < \sigma_{sa}$ O.K
地震時 橋軸 直角	(1列目)	1,959	99	引張側	39	530	$\sigma < \sigma_{sa}$ O.K
	最後列 (5 列目)	最後列 (5 列目) 26	99	圧縮側	187	530	$\sigma < \sigma_{sa}$ O.K
				引張側	-181	-530	$\sigma < \sigma_{sa}$ O.K

表-6.1.16 鋼管の曲げ応力度の照査

表-6.1.17 鋼管のせん断応力度の照査

	せん断力 S (kN)	有効断面積A (m ²)	発生応力度τ (N/mm ²)	許容応力度τ _a (N/mm ²)	判 定
い゙ル1地震時(橋軸方向)	205	$8.791 imes 10^{-3}$	23	300	$ au < au_a$ O.K
い゙ル1地震時(橋軸直角)	189	8.791×10 ⁻³	21	300	$ au < au_a$ O.K

(9) 杭頭結合部の設計

杭頭結合部の概要を図-6.1.5に示す。

図-6.1.5 杭頭結合部の概要

1) 押込み力に対する照査

①フーチングコンクリートの垂直支圧応力度

$$\sigma_{cv} = \frac{P_c}{W^2} \le \sigma_{ca} \qquad (6.1.16)$$

ここに、

i)常 時

$$\sigma_{cv} = \frac{1,133}{0.35 \times 0.35} = 9249 kN / m^2 = 9.2N / mm^2 \le \sigma_{ca} (12N / mm^2)$$

ii) レベル1 地震時

橋軸方向
$$\sigma_{cv} = \frac{1916}{0.35 \times 0.35} = 15643 kN/m^2 = 15.6N/mm^2 \le \sigma_{ca} (18N/mm^2)$$

橋軸直角
$$\sigma_{cv} = \frac{1500}{0.35 \times 0.35} = 15995 kN / m^2 = 16.0N / mm^2 \le \sigma_{ca} (18N / mm^2)$$

②フーチングコンクリートの押抜きせん断応力度

$$\tau_{v} = \frac{P}{4(W+h) h} \leq \tau_{a} \qquad (6.1.17)$$

$$\Xi \equiv i \Xi_{v}$$

- τ_v :垂直方向の押抜きせん断応力度 (kN/m^2)
- τ_a :コンクリートの許容押抜きせん断応力度 (kN/m^2)
- P:軸方向押込み力(kN)
- W : 支圧板の幅 (m)
- h : 垂直方向の押抜きせん断に抵抗するコンクリートの有効厚さ(m)
- i) 常 時

$$\tau_{v} = \frac{1133}{4(0.35 + 0.753)0.753} = 341 kN / m^{2} = 0.34N / mm^{2} \le \tau_{a} (0.9N / mm^{2})$$

ii) レベル1 地震時

橋軸方向
$$\tau_v = \frac{1916}{4(0.35 + 0.753)0.753} = 577 kN/m^2 = 0.58N/mm^2 \le \tau_a (0.9N/mm^2)$$

橋軸直角
$$\tau_{\nu} = \frac{1959}{4(0.35+0.753)0.753} = 590 kN/m^2 = 0.59N/mm^2 \le \tau_a (0.9N/mm^2)$$

①フーチングコンクリートの水平支圧応力度の照査

$$\sigma_{ch} = \frac{H}{D_s l} + \frac{6M}{D_s l^2} \le \sigma_{ca} \qquad (6.1.18)$$

- σ_{ch} :水平支圧応力度(kN/m^2)
- σ_{ca} :コンクリートの許容支圧応力度 (kN/m^2)
- H : 軸直角方向力 (kN)

- **D**_s : 鋼管の外径 (m)
- 1 : 鋼管のフーチングコンクリートへの埋込み長(m)

$$\sigma_{ch} = \frac{205}{0.2674 \times 0.5} + \frac{6 \times 110}{0.2674 \times 0.5^2} = 11358 kN / m^2 = 11.4N / mm^2 \le \sigma_{ca} (18N / mm^2)$$

$$\sigma_{ch} = \frac{189}{0.2674 \times 0.5} + \frac{6 \times 99}{0.2674 \times 0.5^2} = 10271 kN / m^2 = 10.3N / mm^2 \le \sigma_{ca} (18N / mm^2)$$

②フーチングコンクリートの水平方向の押抜きせん断応力度

$$\tau_h = \frac{H}{h'(2l + D_s + 2h')} \leq \tau_a$$
(6.1.19)
ここに、

- τh :水平方向の押抜きせん断応力度(kN/m²)
- τ_a :コンクリートの許容押抜きせん断応力度 (kN/m^2)
- H : 軸直角方向力 (kN)
- h':水平方向の押抜きせん断に抵抗するコンクリートの有効厚さ(m)
- *D_s*:鋼管の外径(*m*)
- *l* :鋼管のフーチングコンクリートへの埋込み長(*m*)
- i) レベル1 地震時(橋軸方向)

 $\tau_h = \frac{205}{0.8663 \left(2 \times 0.5 + 0.2674 + 2 \times 0.8663\right)} = 79 kN / m^2 = 0.08N / mm^2 \le \tau_a (0.9N / mm^2)$

 $\tau_h = \frac{189}{0.8663 \left(2 \times 0.5 + 0.2674 + 2 \times 0.8663 \right)} = 73 kN / m^2 = 0.07N / mm^2 \le \tau_a (0.9N / mm^2)$

3) 支圧板の設計

支圧板の単位幅当たりに生じる曲げモーメントを簡便に鋼管縁からの片持ち梁として算定し、支 圧板の必要厚さを求める。支圧板に生じる単位幅当たりの最大曲げモーメントは次式により求める。

$$M_{max} = \frac{1}{2} \left(\frac{W - D_s}{2} \right)^2 p \qquad (6.1.20)$$

ここに、

 M_{max}
 : 支圧板の最大曲げモーメント(kN・m)

 W
 : 支圧板の幅 0.35(m)

 D_s
 : 鋼管の外径 0.2674(m)

 p
 : 支圧板単位幅当たりに発生する分布荷重(kN/m)

計算の結果、常時の*M_{max}*は 7.89kN.m、レベル1 地震時は橋軸方向で 13.34kN.m、橋軸直角 で 13.64kN.m となる。

次に、支圧板の必要厚さを次式により求める。

支圧板必要厚さ
$$t = \sqrt{\frac{M_{max}}{\sigma_a} \times 6}$$
 (6.1.21)

- ここに、
 - σ_a:支圧板 (SM 490)の許容曲げ応力度
 常時:185000kN/m²、レベル1地震時:277500kN/m²

・常時の支圧板必要厚さt	$\sqrt{\frac{7.89}{185000}} \times 6 \times 1000$	= 16.0 <i>mm</i>
・レベル1地震時(橋軸方向)	の支圧板必要厚さt	$\sqrt{\frac{13.34}{277500} \times 6} \times 1000 = 17.0mm$
・レベル1地震時(橋軸直角)	の支圧板必要厚さ <i>t</i>	$\sqrt{\frac{13.64}{277500} \times 6} \times 1000 = 17.2mm$
したがって、支圧板の厚さは	19mm とする。	

(10) 鋼管加工例

図-6.1.6に鋼管加工例、杭頭詳細図を示す。

機械構造用高張力鋼管HT780

図-6.1.6 鋼管加工例

6.1.4 レベル2地震時の設計

(1)概要

STMP タイプIIにより構成される杭基礎の耐震設計(レベル2地震時)を道路橋示方書¹⁾の地震時保 有水平耐力法に準じて行う。基礎に死荷重、および、橋脚の保有水平耐力により決定された設計水平震 度に相当する地震時慣性力が作用した場合、基礎の降伏に達しないこと、基礎に生じる断面力および基 礎の変位を照査するものとする。なお、本設計計算例では、地震時に橋に影響を与える液状化は発生し ないこととする。

(2) 設計照査に用いる荷重

地震時保有水平耐力法の設計照査に用いるフーチング底面での作用外力を表-6.1.18に示す。

	凯兰卡亚雷库	鉛直荷重	水平荷重	モーメント	
		V_o (kN)	H_o (kN)	M_o (kN · m)	
场前方向	$k_{hp} = 0.76$	94 001	15.095	191 104	
「同中田ノノ」「「」	$k_{hG} = 0.70$	24,021	10,020	131,104	
扬勳古名士白	$k_{hp} = 0.66$	04 001	19,099	100.000	
	$k_{hG} = 0.70$	24,821	13,933	132,203	

表-6.1.18 地震時保有水平耐力法におけるフーチング底面での設計外力

(3) 解析モデル

杭基礎は、フーチングを剛体とし杭頭がフーチングに連結されたラーメン構造としてモデル化する。解 析は図-6.1.7 に示すように各抵抗特性の非線形性を考慮した2次元フレーム解析で行う。

図-6.1.7 地震時保有水平耐力法における STMP タイプⅡから構成される杭基礎の解析モデル

(4) 杭の軸方向の抵抗特性

杭の軸方向抵抗特性は、杭の軸方向バネ定数 K_{VE} を初期勾配とし、押込み支持力の上限値 P_{NU} および引抜き支持力の上限値 P_{TU} を上限値とする弾塑性型としてモデル化する。

1) 杭の軸方向バネ定数 K_{VE}

 $K_{VE} = 116,748 \text{ kN/m} (6.1.3(4) \downarrow \emptyset)$

2) 押込み支持力の上限値 PNU

押込み支持力の上限値は、以下に示す地盤から決まる極限支持力、鋼管耐力の最小値とする。

 $P_{NU} = min(R_U, R_{PU}) \qquad (6.1.22)$ $\Xi \equiv \lambda \leq 1$

P_{NU}: 押込み支持力の上限値(kN)

R_U: 地盤から決まる杭の極限押込み支持力(kN)

R_{PU} : 杭体(鋼管)の耐力(*kN*)

①地盤から決まる杭の極限押込み支持力R₁₁

②杭体(鋼管)の耐力*R_{PU}*

 $R_{PU} = \sigma \ y \times As = 690 \times 8.791 \times 10^3 \times 10^{-3} = 6,066 \text{kN}$

以上より、 $P_{NU} = min(R_U, R_{PU}) = 4,072$ kNとなる。

3) 引抜き支持力の上限値 PTU

引抜き支持力の上限値は、以下に示す地盤から決まる極限支持力に杭の有効重量を加えた値と鋼管 耐力のうち、最小値として求める。

 $P_{TU} = min(P_U + W, P_{PU}) \qquad (6.1.23)$ $\Xi \subseteq \mathcal{U}_{\mathcal{L}}$

 P_{TU} : 引抜き支持力の上限値(kN) P_U : 地盤から決まる杭の極限引抜き支持力(kN)W: 杭の有効重量(kN) = 88kN P_{PU} : 杭体(鋼管)の耐力(kN) = R_{PU} = 6,066kN P_U = 2,815kN(6.1.3 (2) 2) より) $P_U + W$ = 2,815 + 88 = 2,903 kN

以上より、 $P_{TU} = min(P_U + W, P_{PU}) = 2,903 \text{ kN} となる。$

(5) 杭の軸直角方向の抵抗特性

杭の軸直角方向の抵抗特性は、地震時保有水平耐力法に用いる水平方向地盤反力係数 K_{HE} を初期勾 配とし、水平地盤反力度の上限値 P_{HU} を有する弾塑性型としてモデル化する。なお、実際のフレーム解 析において各節点に設定するバネは、これら k_{HE} , P_{HU} に杭径、要素長を乗じる必要があるが、杭径と しては改良体の水平地盤抵抗幅D'(水平抵抗に関する設計上の杭径)を用いることに注意しなければ ならない。

1) 地震時保有水平耐力法に用いる水平方向地盤反力係数 K_{HE}

 $k_{HE} = \eta_k \alpha_k k_H \qquad (6.1.24)$ $= \zeta_k \zeta_k$

k_{HE} : 地震時保有水平耐力法に用いる水平方向地盤反力係数(kN/m³)

ηk :群杭効果を考慮した水平方向地盤反力係数の補正係数 (=2/3)

αk : 単杭における水平方向地盤反力係数の補正係数 (=1.5)

k_H : 地震時(震度法)の水平方向地盤反力係数(kN/m³)

各層における地震時保有水平耐力法に用いる水平方向地盤反力係数を表-6.1.19に示す。

	地盤の種 類	層厚 (m)	地震時(震度法)の 水平方向地盤反力係 数 <i>k_H</i> (kN/m ³)	補正係数 $\eta_k \alpha_k$	地震時保有水平耐力法に 用いる水平方向地盤反力 係数 <i>k_{HE}</i> (kN/m ³)
第1層	粘性土	2.50	41,855	1.0	41,855
第2層	砂質土	2.50	83,709	1.0	83,709
第3層	粘性土	3.00	41,855	1.0	41,855
第4層	砂質土	6.00	167,418	1.0	167,418
第5層	砂質土	1.00	418,546	1.0	418,546

表-6.1.19 地震時保有水平耐力法に用いる水平方向地盤反力係数

2) 水平地盤反力度の上限値 P_{HU}

 $P_{HU} = \eta_p \alpha_p P_U \qquad (6.1.25)$

ここに、

 η_p : 群杭効果を考慮した水平地盤反力度の上限値の補正係数 粘性土地盤 $\eta_p = 1.0$ 砂質地盤 $\eta_p \alpha_p =$ 荷重載荷直角方向の杭中心間隔/改良体の水平地盤抵抗幅 D' (ただし、 $\leq \alpha_p$)

- α_p : 単杭における水平地盤反力度の上限値の補正係数
 粘性土地盤 α_p=1.5、砂質地盤 α_p=3.0
- *P*_U : 地震時の受働土圧強度(kN/m²) で、道路橋示方書に準じクーロン土圧による受働 土圧係数を用いて求める。

ただし、砂質地盤における最前列以外の杭については、水平地盤反力度の上限値 *P_{HU}* を最前列の 値の 1/2 とする。

各深度における水平地盤反力度の上限値を表-6.1.20に示す。

	地盤 層厚 種類 (m)		層厚 粘着力 (m) C (kN/m²)	せん	壁面	単位 体積 重量 γ' (kN/m ³)	受働 土圧 係数 Kep	受働 土圧 強度 P _U (kN/m ²)	水平地盤反力度の上限値 (kN/m²)			
		層厚		断抵 抗角	摩擦 角					P _{HU}		
		(III)		ф (°)	δ _Ε (°)				η _р α _ρ	1 列目	2 列目 以降	
第1層	粘性土	2.50	30	0	0.0	8	1.000	$153.50 \\ 173.50$	1.50	$230.3 \\ 260.3$	$230.3 \\ 260.3$	
第2層	砂質土	2.50	0	27	-4.5	8	3.035	$344.52 \\ 405.22$	3.00	$1033.6 \\ 1215.7$	$516.8 \\ 707.9$	
第3層	粘性土	3.00	30	0	0.0	8	1.000	$193.50 \\ 217.50$	1.50	$230.3 \\ 260.3$	$230.3 \\ 260.3$	
第4層	砂質土	6.00	0	30	-5.0	10	3.505	552.06 762.34	3.00	$1656.2 \\ 2287.0$	828.1 1143.5	
第5層	砂質土	1.00	0	40	-6.7	10	5.996	1304.13 1364.09	3.00	3912.4 4092.3	$ 1956.2 \\ 2046.2 $	

表-6.1.20 地震時保有水平耐力法に用いる水平地盤反力度の上限値

注)フーチング底面の土被りは5.5mである。

(6) 杭体の曲げモーメント M~曲率 φの関係

STMP タイプ II の杭体の曲げモーメント M〜曲率 ϕ の関係は、鋼管のみを考慮し、道路橋示方書の 鋼管杭に準じて全塑性モーメント M_p を上限とする弾塑性型とする。全塑性モーメント M_p および勾配 変化点 Y'の曲率 ϕ_p は 4.2.4 により求める。ここで、杭体の曲げモーメント M〜曲率 ϕ の関係は、死 荷重が作用したときの杭頭反力を軸力として算出した。

表-6.1.21 に STMP タイプⅡの曲げモーメント M~曲率 φの関係を示す。

軸力 PN = 24,821kN/25本 = 993kN/本 鋼管径 肉厚 鋼種 降伏時 全塑性時 (mm)(mm) $\phi y (1/m)$ My (kN.m) ϕ y' (1/m) Mp (kN.m) 機械構造用 3.177×10^{-2} 高張力鋼管 267.411.0 2.071×10^{-2} 309.9 475.4HT780

表-6.1.21 杭体の曲げモーメントM~曲率φの関係

注) 肉厚は腐食しろ 1mm を考慮した板厚を示す。

(7) フーチング前面地盤の水平抵抗特性

本設計計算例は、フーチング前面の地盤が長期的に安定して存在しており、また良質であるものとして、フーチング前面地盤の水平抵抗を考慮する。フーチング前面地盤の水平抵抗特性は、水平方向地盤 反力係数 k_{HE} を初期勾配とし、水平地盤反力度の上限値 P_{HU} を有する弾塑性型としてモデル化する。ここで、フーチング前面地盤のN値としては、原地盤の条件よりN=7とした。 1) フーチング前面地盤の水平方向地盤反力係数k_{HE}

フーチング前面地盤の水平方向地盤反力係数kHEは、道路橋示方書IVに準じて算出する。

$$k_{HE} = \alpha_k k_{HO} \left(\frac{B_H}{0.3}\right)^{-3/4}$$
(6.1.26)
= 9,974kN / m³
ここに、
 k_{HO} : 水平方向地盤反力係数 $k_{HO} = 93,333kN / m^3$

B_H:フーチング前面の換算載荷幅

$$B_H = B_e = 10m$$
 (ただし、 $B_H \le \sqrt{B_e L_e} = \sqrt{10 \times 3.5} = 5.916m$)

したがって、
$$B_H = 5.916m$$
となる。
 B_e : フーチング有効前面幅で、 $B_e = 10.0m$

- *L*_e : フーチングの有効根入れ長で、*L*_e=3.5m
- $\alpha_k : k_H$ の推定に用いる補正係数で、 $\alpha_k = 1.0$

2) フーチング前面地盤の水平地盤反力度の上限値 P_{HU}

フーチング前面地盤の水平地盤反力度の上限値 P_{HU} を、道路橋示方書IVに準じて算出する。 $P_{HU} = \alpha_p P_{EP}$ (6.1.27)

- ここに、
 - $\alpha_p :$ 水平地盤反力度の上限値の割増し係数で、次式により求める。 $\alpha_p = 1.0 + 0.5(z / B_e) \leq 3.0$
 - z : 地盤面からの深さ(m)
 - **B**e : フーチング有効前面幅(m)
 - *P*_{EP} : 深さz における地震時の受働土圧強度 (kN/m²)

フーチング前面地盤のせん断抵抗角を $\phi=23^\circ$ 、単位体積重量を $\gamma=17$ kN/m³とした。 表-6.1.22 にフーチング前面地盤の水平地盤反力度上限値 P_{HU} の計算結果を示す。

	水平方向	受働土圧	フーチン	地盤面	受働土圧	水平地盤	水平地盤反力					
	地盤反力	係数	グの前面	からの	強度 P _{EP}	反力度の	度の上限値					
	係数 k _{HE}	K_{EP}	有効幅 B_e	深さ <i>z</i>	(kN/m^2)	上限値の	P_{HU}					
	(kN/m ³)		(m)	(m)		割増し係	(kN/m^2)					
						数 α_p						
フーチング上面	0.074	9 599	10.00	2.0	85.96	1.100	94.56					
フーチング下面	9,974	2.928	10.00	5.5	236.40	1.275	301.41					

表-6.1.22 フーチング前面地盤の水平地盤反力度の上限値 P_{HU}

(8) 橋軸方向に対する安全性の判定

非線形解析により得られた地震時慣性力と上部構造の慣性力作用位置での水平変位関係を図-6.1.8 に 示す。また、上部構造および橋脚躯体に設計水平震度 k_{hp} =0.76、フーチングに設計水平震度 k_{hG} =0.70 に相当する慣性力(表-6.1.18)を作用させた場合に基礎に生じる断面力、杭頭反力、基礎の変位などを 表-6.1.23 に示す。

表-6.1.23 によれば、杭体は降伏しておらず、また、各杭の杭頭反力は押込み支持力の上限値に達して いない。したがって、基礎の設計に考慮する荷重に対して基礎は降伏しないと判定される。

杭頭における水平変位 δ_{FO} およびフーチングの回転角 α_{FO} はいずれも基礎の制限値の目安以下となっている。

22500 2~5列目 鋼管全塑性モーメント 20000 1列目 押込み支持力の上限 Ž 17500 1列目 鋼管全塑性モ 基礎に作用させる地震時慣性カ 15000 設計水平震度相当(K_{HP}:0.76, K_{HG}:0.7) の水平荷重 15,025kN 12500 10000 1~5列目 鋼管降伏(全杭降伏:基礎の降伏) 7500 5000 2500 0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 上部構造の慣性力作用位置での変位(m)

以上より、杭基礎の安全性の判定を満足する。

	基礎に作 用させる 慣性力 (kN)	杭頭にお ける水平 変位 (mm)	フーチング の回転角 (rad)	上部構造の慣 性力作用位置 における水平 変位(m)	杭基礎の状態
1	15,025	41.0	0.005691	0.124	設計水平荷重に達する (杭基礎は降伏に達していない)
2	15,175	43.2	0.005759	0.127	1~5列目(杭全列)杭頭部 鋼管の降伏に達した(基礎の降伏)
3	17,128	73.6	0.006649	0.170	1列目(最前列) 押込み支持力の上限値に達した
4	17,128	73.6	0.006649	0.170	1列目 杭頭部 鋼管の全塑性モーメントに達した
5	17,429	81.1	0.006979	0.182	2,3,4,5 列目 杭頭部 鋼管の全塑性モーメントに達した

図-6.1.8 基礎に作用させる慣性カーと部構造の慣性カ作用位置での水平変位関係(橋軸方向)

				1列目	2列目	3列目	4列目	5 列目	
	最大曲げ モーメント	М	kN•m	302.8	302.8	302.8	302.8	302.8	
	降伏曲げ モーメント	<i>M</i> _y	kN•m	309.9	309.9	309.9	309.9	309.9	
基礎	羽 字			$M \leq M_y$	$M \leq M_y$	$M \leq M_y$	$M \leq M_y$	$M \leq M_y$	
⊷ の 耐					杭体	は降伏しない	ОК		
力 の	杭頭の 鉛直反力	P_N	kN	3,651	2,322	993	-336	-1,665	
照 査	支持力の 上限値	P_{NU} P_{TU}	kN	4,072	4,072	4,072	-2,903	-2,903	
	业 一 一			$P_N \leq P_{NU}$	$P_N \leq P_{NU}$	$P_N \leq P_{NU}$	$P_N \leq P_{TU}$	$P_N \leq P_{TU}$	
	刊化				2.8 302.8 302.8 302.8 302.8 3 9.9 309.9 309.9 309.9 309.9 3 M_y $M \leq M_y$ $M \leq M_y$ $M \leq M_y$ M M_y $M \leq M_y$ $M \leq M_y$ $M \leq M_y$ M $fide i i i i 51 2,322 993 \cdot 336 -1 72 4,072 4,072 \cdot 2,903 -2 P_{NU} P_N \leq P_{NU} P_N \leq P_{TU} P_N \overline{z} \overline{z} \overline{z} \overline{z} \overline{z} 0.041 \overline{z} \overline{z} \overline{z} \overline{z} \overline{z} \overline{z} \overline{z} \overline{z} \overline{z} 0.400 \overline{z} \overline{z} \overline{z} \overline{z} \overline{z} \overline{z} \overline{z} \overline{z} \overline{z} 0.006 \overline{z} $				
	杭頭における 水平変位	δ_{FO}	m			0.041			
基礎	水平変位の 制限値の目安	δ_{FOa}	m			0.400			
⊷ の 変	判定	_	_		δ	$FO \leq \delta_{FOa}$ ()K		
位の	フーチングの 回転角	α_{FO}	rad			0.006			
照査	回転角の 制限値の目安	α_{FOa}	rad			0.025			
	判定		_	$\alpha_{FO} \leq \alpha_{FOa}$ OK					

表-6.1.23 杭基礎の安全性の判定(橋軸方向)

(9) 橋軸直角方向に対する安全性の判定

非線形解析により得られた地震時慣性力と上部構造の慣性力作用位置での水平変位関係を図-6.1.9 に 示す。また、上部構造および橋脚躯体に設計水平震度 k_{hp} =0.66、フーチングに設計水平震度 k_{hG} =0.70 に相 当する慣性力(表-6.1.18)を作用させた場合に基礎に生じる断面力、杭頭反力、基礎の変位などを表 -6.1.24 に示す。

表-6.1.24 によれば、杭体は降伏しておらず、また、各杭の杭頭反力は押込み支持力の上限値に達して いない。したがって、基礎の設計に考慮する荷重に対して基礎は降伏しないと判定される。

杭頭における水平変位 δ_{FO} およびフーチングの回転角 α_{FO} はいずれも基礎の制限値の目安以下となっている。

以上より、杭基礎の安全性の判定を満足する。

	基礎に作用	杭頭におけ	フーチン	上部構造の慣性力	
	させる慣性	る水平変位	グの回転	作用位置における	杭基礎の状態
	力(kN)	(mm)	角 (rad)	水平変位(m)	
1	19,099	20.9		0 190	設計水平荷重に達する
T	13,933	30.2	0.00066	0.126	(杭基礎は降伏に達していない)
0	15 105	44.9	0.00000	0.151	1~5列目(杭全列) 杭頭部
Z	10,187	44.3	0.00626	0.151	鋼管の降伏に達した(基礎の降伏)
4	15 004	7 0.0	0.00000	0.100	1列目(最前列)
4	10,884	53.9	0.00660	0.166	押込み支持力の上限値(基礎の降伏)
~	17 190	7 0.0	0.00500	0.000	1列目 杭頭部
Э	17,138	76.2	0.00782	0.209	鋼管の全塑性モーメントに達した
0	15 410	00.0	0.00010	0.001	2,3,4,5 列目 杭頭部
6	17,416	83.2	0.00810	0.221	鋼管の全塑性モーメントに達した
-	10 501	150.0	0.00001	0.000	5列目(最後列)
1	18,531	178.9	0.00901	0.332	引抜き支持力の上限値に達した

図-6.1.9 基礎に作用させる慣性カーン部構造の慣性力作用位置での水平変位関係(橋軸直角方向)

				1列目	2列目	3列目	4 列目	5 列目		
	最大曲げ モーメント	М	kN•m	229.5	229.5	229.5	229.5	229.5		
	降伏曲げ モーメント	M _y	kN•m	309.9	309.9	309.9	309.9	309.9		
基礎	当 中			$M \leq M_y$	$M \leq M_y$	$M \leq M_y$	$M \leq M_y$	$M \leq M_y$		
その耐	刊化	_		杭体は降伏しない OK						
力 の	杭頭の 鉛直反力	P_N	kN	3,636	2,314	993	-329	-1,650		
照 査	押込み支持力 の上限値	P_{NU} P_{TU}	kN	4,072	4,072	4,072	-2,903	-2,903		
	州 中			$P_N \leq P_{NU}$	$P_N \leq P_{NU}$	$P_N \leq P_{NU}$	$P_N \leq P_{TU}$	$P_N \leq P_{TU}$		
	刊	_			支持力の	309.11 17711 309.11 229.5 309.9 309.9 I_y $M \leq M_y$ $M \leq M_y$ $M \leq M_y$ $M \leq M_y$ M K 993 -329 k 900 $P_N \leq P_{NU}$ P_N $hor P_N \leq P_{NU} P_N P_N hor k 0.030 0.030 0.400 \delta_{FO} \leq \delta_{FOa} OK 0.0025 \alpha_{FO} \leq \alpha_{FOa} OK $				
	杭頭における 水平変位	δ_{FO}	m			0.030				
基礎	水平変位の 制限値の目安	δ_{FOa}	m			0.400				
へ の 変	判 定	_	_		δ	$FO \leq \delta_{FOa}$ C)K			
位の	フーチングの 回転角	α_{FO}	rad			0.006				
照查	回転角の 制限値の目安	α_{FOa}	rad	0.025						
	判定	_	_	$\alpha_{FO} \leq \alpha_{FOa} \text{OK}$						

表-6.1.24 杭基礎の安全性の判定(橋軸直角方向)

[参考文献]

1) 日本道路協会:道路橋示方書·同解説 IV下部構造編, 1996.

6.2 既設橋梁基礎の耐震補強

6.2.1 概 要

ST マイクロパイルによる既設橋梁基礎の耐震補強について、設計計算例を示すものである。既設 基礎のモデルは、「日本道路協会:既設道路橋基礎の補強に関する参考資料」¹⁾を引用した。

なお、本既設基礎の周辺地盤は地震時に液状化が発生するが、ここでは、ST マイクロパイルにより補強した杭基礎の設計モデルを示すこと主な目的としているため、非液状化時を対象とした場合に必要な杭諸元、レベル1およびレベル2地震時に対する詳細な設計モデル、照査結果等を主に示すこととした。液状化時に必要な杭諸元や照査結果については、報告書²⁾を参照されたい。

6.2.2 既設基礎の設計条件

(1) 構造条件

本設計計算例で対象とする既設の鉄筋コンクリート橋脚の設計条件を以下に示す。

- 1) 適用基準
 - ·鋼道路橋示方書;昭和39年6月 (社)日本道路協会
 - ・道路橋下部構造設計指針杭基礎の設計編;昭和39年3月 (社)日本道路協会
- 2) 重要度の区分等
- 重要度の区分: B種の橋

地 域 区 分:A地域

- 設計水平震度: $k_h = 0.25$ (レベル1 地震時)
- 3) 上部工構造
- 形 式:単純鋼 I げた橋
- 支 間 長:26.0m
- 幅 員:全幅員 11.0m
- 支持条件:可 動
- 支承の種類:支承板支承(鋼製)
- 4) 下部構造(図-6.2.1~図-6.2.2 参照)
- 橋 脚: 単柱式橋脚 (T 形橋脚)、矩形断面 2.30m×1.70m
- 基 礎:打込み PC 杭 φ 600mm
- 使用材料:表-6.2.1に示す。

部 材	コンクリート	鉄筋
橋 脚	$\sigma_{ck} = 21 \text{ N/mm}^2$	SD905
フーチング	$\sigma_{ck} = 21 \text{ N/mm}^2$	5D295
	PC杭B種	
壮	$(\sigma_{ck} = 50 \text{ N/mm}^2)$	
们上	中詰めコンクリート	
	$(\sigma_{ck} = 21 \text{ N/mm}^2)$	

表-6.2.1 既設基礎の使用材料

(b)側 面 図

図-6.2.1 設計対象とする既設橋梁基礎

(a)フ-チング側面鉄筋配置

(b)フ-チング正面鉄筋配置

1600

270105

105

(e)中詰めコンクリート補強配筋

(c)杭頭補強

図-6.2.2 既設基礎の配筋状態

(2) 地盤条件

耐震設計上の地盤種別:Ⅱ種地盤

土質柱状図:図-6.2.3に示す。

地盤条件:表-6.2.2に示す。

なお、本設計計算例では、非液状化時のみの計算例を示す。

図-6.2.3 土質柱状図

表-6.2.2 地盤条件

	地盤の 層厚 平均 ^{粘着力}		せん断抵 抗角	単位体積重量 (kN/m ³)		地盤変形 係数 Eo		
	作里決則	(III)	11月	(kN/m²)	φ (°)	γs	$\gamma s'$	(KIN/M²) ※
第1層	砂質土	10.0	5	0	23	18	9	14,000
第2層	粘性土	4.8	5	30	0	17	8	14,000
第3層	砂質土	2.9	15	0	30	18	9	42,000
第4層	砂質土	1.2	50	0	40	19	10	140,000

※ 常時の値

6.2.3 既設基礎のレベル2地震時の照査

(1) 設計条件

レベル2地震時の橋脚の曲げ耐力、設計水平震度を表-6.2.3に示す。

表-6.2.3	レベル2地震時の設計条件
---------	--------------

				記号	単位	橋軸方向	橋軸直角方向
固有周期				Т	\mathbf{s}	0.56	0.58
し、ジルの地震動の乳ませ双電中 タイプI			k_{hc}	_	0.85	0.85	
	長期10700百八	下千辰皮	タイプⅡ	k_{hc}		1.75	1.75
上部構造物	重量			W_U	kN	3,283	3,283
橋脚躯体重	量			W_P	kN	1,264	1,264
等価重量				W	kN	3,915	3,915
橋脚の終局	水平耐力(久	タイプⅡ)		P_u	kN	2,960	3,205
	作			$k_{he} \bullet W$	kN	2,195	2,195
橋脚基部の曲ば副	9471	地震時份	导有水平耐力	P_a	kN	2,960	3,205
		作用力		$k_{he} \bullet W$	kN	2,626	2,705
	747 <u>I</u>	地震時份	导有水平耐力	P_a	kN	2,960	3,205
基礎の照査に用いる設計水平震度			$k_{hp} = c_{dF} P_u / W$	_	0.83	0.90	

レベル2地震時の照査に用いるフーチング底面中心における作用外力を表-6.2.4、表-6.2.5に示す。

	鉛直荷重 16	水平震度		水平荷重	重心	曲げモーメント
	(kN)	記号	値	<i>Ho</i> (kN)	y(m)	$Mo(kN \cdot m)$
上部構造 W _U	3,283	k_{hp}	0.83	2,725	9.00	24,524
橋脚躯体 WP	1,288	k_{hp}	0.83	1,069	6.53	6,980
フーチング W _F	875	k_{hg}	0.70	612	0.71	435
上載土砂 Ws	601		_			_
	6,047	_	_	4,406	_	31,938

表-6.2.4 レベル2地震時のフーチング底面における作用外力(橋軸方向)

表-6.2.5 レベル2地震時のフーチング底面における作用外力(橋軸直角方向)

	鉛直荷重 16	街重 Vo 水平震度		水平荷重	重心	曲げモーメント
	(kN)	記号	値	<i>Ho</i> (kN)	y(m)	$Mo(kN \cdot m)$
上部構造 W_U	3,283	k_{hp}	0.90	2,955	10.70	31,615
橋脚躯体 WP	1,288	k_{hp}	0.90	1,159	6.53	7,568
フーチング W _F	875	k_{hg}	0.70	612	0.71	435
上載土砂 Ws	601		_	—	—	_
合計	6,047	_	_	4,726	_	39,618

(2) レベル2地震時の照査結果

レベル2地震時(非液状化時)の既設基礎の照査結果は、図-6.2.4~図-6.2.5 に示すとおりである。 橋軸方向、橋軸直角方向とも、設計水平水震度(*k_{hp}*,*k_{hg}*)に相当する水平荷重が作用する前に基礎 の降伏に達しており、基礎の水平耐力が不足している。

1) 橋軸方向

水平 震度	水平荷重 (kN)	杭頭にお ける水平 変位 (mm)	フーチング の回転角 (rad)	上部構造の慣 性力作用位置 における水平 変位 (m)	杭基礎の状態
0.376	1,850	8.6	0.003241	0.038	既設杭3列目(最後列) 引抜き支持力の上限値に達した
0.475	2,335	14.3	0.006071	0.069	既設杭1列目(最前列) 押込み支持力の上限値(基礎の降伏)
0.510	2,511	30.8	0.016043	0.175	既設杭 2,3 列目 杭体の降伏に達した
0.515	2,533	34.1	0.018078	0.197	既設杭1列目(最前列) 杭体の降伏に達した
0.528	2,599	55.9	0.031201	0.337	既設杭1列目(最前列) 杭体の終局に達した
0.533	2,622	74.8	0.042249	0.455	既設杭 2,3 列目 杭体の終局に達した

図-6.2.4 慣性カーと部構造慣性カ作用位置での水平変位関係(橋軸方向)
2) 橋軸直角方向

水平 震度	水平荷重 (kN)	杭頭にお ける水平 変位 (mm)	フーチング の回転角 (rad)	上部構造の慣 性力作用位置 における水平 変位(m)	杭基礎の状態
0.413	2,032	8.1	0.002425	0.034	既設杭3列目(最後列) 引抜き支持力の上限値に達した
0.519	2,552	13.3	0.004584	0.062	既設杭1列目(最前列) 押込み支持力の上限値(基礎の降伏)
0.557	2,741	37.7	0.016797	0.217	既設杭 2,3 列目 杭体の降伏に達した
0.562	2,765	43.3	0.019592	0.253	既設杭1列目(最前列) 杭体の降伏に達した
0.576	2,835	85.5	0.040205	0.516	既設杭1列目(最前列) 杭体の終局に達した
0.581	2,859	118.9	0.056487	0.723	既設杭 2,3 列目 杭体の終局に達した

図-6.2.5 慣性カーンと部構造慣性カ作用位置での水平変位関係(橋軸直角方向)

6.2.4 既設基礎の補強設計

(1) 補強方法

既設基礎の補強概要を図-6.2.6 に示す。既設基礎の周囲に ST マイクロパイルを増し杭として打設 し、増しフーチングによって既設基礎と一体化させ、基礎の水平耐力を増加させるものである。本計 算例では、空頭制限が約 4.5m(橋脚梁直下)であるが、小型のベースマシンによって施工が可能で ある。表-6.2.6 に ST マイクロパイルの杭諸元を示す。

図-6.2.6 ST マイクロパイルによる既設基礎の補強概要図(非液状化時)

項目		内容
杭諸元		杭長L = 16.9m, 杭本数n=12本、支圧板による杭頭結合
改良体造成径		改良体造成径 $D_c = 600$ mm
以艮伴	改良体強度	砂質土 q_u =4N/mm ² ,粘性土 q_u =2N/mm ² ,支持層 q_u =10N/mm ²
细答	鋼管諸元	高張力鋼管 STKT590,鋼管径 D_s =216.3mm,肉厚 t =12.0mm
· 」 「 」 「 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」	節加工	節突起加工間隔 p =200mm, 節加工高さ h =2.5mm
グラウト		グラウト強度 σ_{gk} =30N/mm², グラウト体の外径 D_g =239mm

表-6.2.6 ST マイクロパイルの諸元

- (2) 補強設計の主な仮定条件
- 1) ST マイクロパイルの配置

本計算例においては、用地境界等の制約はないものとし、既設杭とSTマイクロパイルの杭中心間隔はそれぞれの杭径(改良体造成径 D_c 600mm)の2.5倍の杭間隔をとるものとした。また、それぞれの杭間隔は杭径の2.5倍の間隔を確保しているため、群杭の影響(レベル1地震時における水平方向地盤反力係数の低減や群杭としての支持力照査)は無視するものとした。

2) 増しフーチング

本計算例においては、フーチング土被りに対する制約はないものとし、上面増厚とした。

3) 荷重分担

本計算例においては、既設杭は健全なものとして荷 重分担を設定する。ここでは、フーチング底面に作用 する荷重のうち、地震によって生じる水平力およびモ ーメントは既設杭とSTマイクロパイルが分担し、鉛 直荷重については荷重の載荷順序を考慮して次のよ うに設定した(図-6.2.7参照)。

- ・既設構造死荷重 VD(上部構造重量 VI、橋脚重量
 V2、既設フーチング重量 V3)は既設杭が負担する。
- ・補強によって増加する死荷重△VD(増しフーチング 重量 V4、上載土砂重量 V3)は、既設杭と ST マイ クロパイルの軸方向バネ定数 Kv の比率で分担する。

図-6.2.7 鉛直死荷重の荷重分担

レベル2 地震時の計算手法

補強基礎の平面図を図-6.2.8 に示す。本計算例においては、既設杭径(600mm)と ST マイク ロパイルの改良体水平地盤抵抗幅 D'(350mm)の比が 1.7 であり、レベル 2 地震時における水平 地盤反力度の上限値の比率に関しては、道示IVに基づいて設定することとした。

図-6.2.8 補強基礎の杭配置図

- (3) 解析モデル
- 1) 構造解析モデル

STマイクロパイルにより補強した杭基礎の構造解析モデルは、レベル1地震時、レベル2地震時とも、図-6.2.9に示すようにフーチングを剛体として杭〜ラーメンモデルを用いた。

図-6.2.9 ST マイクロパイルにより補強した杭基礎の解析モデル

2) フーチングの剛体判定

構造解析においてはフーチングを剛体として取り扱うが、フーチングの剛体判定は、道示IVを準 用し、以下のように検討した。

$$\beta \ \lambda \leq 1.0 \qquad (6.2.1)$$

$$\beta = \sqrt[4]{\frac{3k_p}{Eh^3}}$$
(6.2.2)

$$k_p : 換算地盤反力係数 (kN/m3) で式 (6.2.3) により求める。
E : フーチングコンクリートのヤング係数 (kN/m2)
h : フーチングの厚さ (m)
$$k_p = \frac{\Sigma Kv_1 + \Sigma Kv_2}{DB}$$
(6.2.3)

$$Kv_1 : 既設杭1本の軸方向バネ定数 (kN/m)
Kv_2 : ST マイクロパイル1本の軸方向バネ定数 (kN/m)
D : フーチングの幅 (m)
B : フーチングの奥行き (m)
$$k_p = \frac{309,940 \times 9 + 113,410 \times 12}{8.0 \times 7.0} = 74,114 (kN/m3)$$$$$$

$$\beta = 4 \sqrt{\frac{3 \times 74,114}{2.35 \times 10^7 \times 2.0^3}} = 0.185 \text{ (m}^{-1})$$

$$\lambda = 2.85 \text{ (m)}$$

$$\beta \ \lambda = 0.185 \times 2.85 = 0.528 \le 1.0$$

以上により、フーチングは剛体として判定される。

- (4) 補強基礎のレベル1地震時の照査
 - 作用荷重

フーチング底面における作用荷重を表-6.2.7(橋軸方向)、表-6.2.8(橋軸直角方向)に示す。

	鉛直荷重 16	水平震度		水平荷重	重心	曲げモーメント
	(kN)	記号	値	<i>Ho</i> (kN)	y(m)	$Mo(kN \cdot m)$
上部構造 W _U	3,283	k_h	0.25	821	9.00	7,387
橋脚躯体 WP	1,239	k_h	0.25	310	6.72	2,081
フーチング W _F	2,800	k_{hg}	0.25	700	1.00	700
上載土砂 Ws	938	_	—	—	_	_
合 計	8,260	_	_	1,830	_	10,168

表-6.2.7 補強基礎のフーチング底面における作用外力(レベル1地震時:橋軸方向)

表-6.2.8 補強基礎のフーチング底面における作用外力(レベル1地震時:橋軸直角方向)

	鉛直荷重 16	水平震度		水平荷重	重心	曲げモーメント
	(kN)	記号	値	<i>Ho</i> (kN)	y(m)	$Mo(kN \cdot m)$
上部構造 W _U	3,283	k_h	0.25	821	10.70	8,782
橋脚躯体 WP	1,239	k_h	0.25	310	6.72	2,081
フーチング W _F	2,800	k_{hg}	0.25	700	0.71	700
上載土砂 Ws	938	—	—	—	—	
合 計	8,260	_		1,830	_	11,563

荷重分担を考慮した作用外力の集計を表-6.2.9 に示す。実際の構造解析においては、既設杭および STマイクロパイルが共同で負担する荷重(△V_D, Ho, Mo)をフーチング底面に作用させて各杭の杭頭 反力等を算出し、既設構造死荷重 V_Dによる既設杭の杭頭反力を別途求めておいて、合算して既設杭 の杭頭反力を算出している。

表-6.2.9 補強基礎のフーチング底面における作用外力の集計(レベル1地震時)

		橋軸方向	橋軸直角方向
既設杭のみで負担する鉛	直荷重 V _D (kN)	5,446	5,446
野設杭お上び ST マイ	鉛直荷重 $ riangle V_D$ (kN)	2,814	2,814
クロパイルで負担する	水平荷重 Ho (kN)	1,830	1,830
作用荷重	曲げモーメント Mo(kN・m)	10,168	11,563

注) $V_0 = V_D + \triangle V_D$

V_D : 既設構造の死荷重(上部構造重量+橋脚重量+既設フーチング重量) △*V_D*: 増しフーチング重量と上載土砂による鉛直荷重の増分

2) 既設杭の設計定数

①既設杭の諸元

既設 PC 杭の諸元を表-6.2.10 に示す。

杭	種	打込み PC 杭 φ600 (B種)	
杭	長	16.0m	
杭 本	数	9本	
杭	径	0.6m (コンクリート厚 0.1m)	
	コンクリート設計基準強度 σ_{ck}	50N/mm ²	
	PC 鋼線	ϕ 9mm,26 \Rightarrow A_p =1,654mm ²	
	有効プレストレス σ_{ce}	8.1 N/mm ²	
杭 体	スパイラル筋	ϕ 4mm,ctc110mm	
	杭体内補強鉄筋	D19:12本 (SD295)	
	中詰めコンクリート設計基準強度 σ_{ck}	21N/mm ²	フーチング底 面~1.2m 区間
	中詰め補強鉄筋	D16:10本 (SD295)	
	換算断面積 Ae	0.157 m^2	
設計定数	換算断面係数 Ze	$1.7985 \times 10^{-2} \text{ m}^3$	
	換算断面 2 次モーメント <i>I</i> e	$5.3955~ imes 10$ $^{-3}~{ m m}^4$	

表-6.2.10 既設 PC 杭の諸元

②許容応力度

既設 PC 杭の杭体の許容応力度を表-6.2.11 に示す。

表-6.2.11 既設 PC 杭の各許容応力度

照查位置	許容応力度の種類	記号	単位	常時	レベル1 地震時
145百百立17	コンクリートの許容曲げ圧縮応力度	σ _{ca}	N/mm ²	17	25
机與司	鉄筋の許容引張応力度	о _{sa}	N/mm ²	180	270
₩1寸式7	コンクリートの許容曲げ圧縮応力度	σ _{ca}	N/mm ²	17	25
地中部	コンクリートの許容曲げ引張応力度	σ_{ca}	N/mm ²	_	5

注) PC 杭のコンクリートの各許容応力度は、参考資料 ¹⁾により設定した。

③許容支持力

既設 PC 杭の軸方向許容支持力を表-6.2.12 に示す。

		記号	単位	常 時	レベル1 地震時
許容押込み 支持力	地盤から決まる杭の極限支持力	R_u	kN	2	,829
	安全率	п		3	2
	許容支持力	R_a	kN	931	1,396
許容引抜き 支持力	地盤から決まる杭の極限支持力	P_u	kN	,	794
	安全率	п		6	3
	許容支持力	P_a	kN	169	302

表-6.2.12 既設 PC 杭の軸方向許容支持力

④水平方向地盤反力係数

既設 PC 杭の水平方向地盤反力係数を表-6.2.13 に示す。

因来旦	上质	層厚(m)	水平方向地盤反力係数 k_H (kN/m ³)			
眉笛万	工員		常時	レベル1 地震時		
第1層	砂質土	7.0	15,320	30,630		
第2層	粘性土	4.8	15,320	30,630		
第3層	砂質土	2.9	45,950	91,900		
第4層	砂質土	1.2	153,170	306,340		

表-6.2.13 既設 PC 杭の水平方向地盤反力係数

⑤軸方向バネ定数

既設 PC 杭の軸方向バネ定数を表-6.2.14 に示す。

表-6.2.14 既設 PC 杭の軸方向バネ定数

	常時	地震時
軸方向バネ定数 K_V (kN/m)	309,940	309,940

3) STマイクロパイルの設計定数

①ST マイクロパイルの諸元

STマイクロパイルの諸元を表-6.2.15に示す。

杭	長	L=16.9m(鋼管根入れ長 15.9m)
杭	本 数	12本
步卢休	改良体造成径	改良体造成径 D_c =600mm
以及仲	改良体強度	砂質土 q_u =4N/mm ² ,粘性土 q_u =2N/mm ² ,支持層 q_u =10N/mm ²
	鋼管諸元	高張力鋼管 STKT590,鋼管径 D _s =216.3mm,肉厚t =12.0mm
	節加工	ビード溶接による節突起加工 節加工間隔 <i>p</i> =200mm、節高さ <i>h</i> =2.5mm
錙 管	鋼管設計定数 (腐食しろ 1mm 考慮)	ヤング係数 E = 2.0×10 ⁵ N/mm ² 断面積 A = 7.026×10 ⁻³ m ² , 断面係数 Z = 3.397×10 ⁻⁴ m ³ , 断面 2 次モーメント I = 3.640×10 ⁻⁵ m ⁴ , 曲げ剛性 EI = 7,281kN・m ²
ガラウト	グラウト強度	設計基準強度 30N/mm ²
クラワト	削 孔 径	グラウト体の外径 D_g = 254mm
杭頭結合方法		支圧板方式による杭頭固定結合

表-6.2.15 ST マイクロパイルの諸元

②許容応力度

STマイクロパイルの杭体の許容応力度を表-6.2.16に示す。

大別			許容师		
	応力度の種類	単位	常時	レベル1 地震時	備考
鋼 管 (高張力鋼管 STKT590)	許容引張応力度	N/mm ²	255	380	第Ⅱ部
	許容圧縮応力度	N/mm ²	255	380	表-4.3.1
	許容せん断応力度	N/mm ²	145	215	参照

③ST マイクロパイルの許容支持力の算定

a.極限押込み支持力の推定

●極限押込み支持力 Ru の推定

地盤から決まる杭の極限押込み支持力は、式(6.2.4)によって推定する。

 $R_u = q_d \cdot A_c + U_c \sum L_i \tau_{ci} \qquad (6.2.4)$

ここに、

- R_u:地盤から決まる杭の極限押込み支持力(kN)
- q_d : 改良体先端における単位面積当たりの極限支持力度(kN/m²)

ここに、支持層が砂礫地盤であるため $q_d = 2,500 \text{ kN/m}^2$ とする。

- A_c : 改良体先端面積 (m²) = $\pi D_c^2 / 4 = 0.62 \times \pi / 4 = 0.283 \text{m}^2$
- *D_c* : 改良体造成径(m) = 0.6m
- U_c :改良体の周長(m) = $0.6 \times \pi$ = 1.885m
- Li : 周面摩擦力を考慮する層の層厚(m)

ただし、杭頭から $1/\beta$ 範囲は周面摩擦抵抗を無視することとし、第1層目の 層厚 L_1 は 7.0m - 1.5m = 5.5m とする(常時の $1/\beta$ =1.350m、地震時の $1/\beta$ =1.135m より、周面摩擦抵抗を無視する範囲を簡便に 1.5m と統一した)。

- τ_{ci}:周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)
 - ここに、 砂質土 $\tau_{ci} = 5N$ (≤ 200)

粘性土 $\tau_{ci} = C$ または10N (≤ 150)

表-6.2.17 に周面摩擦力の推定表を示す。

	土質	層厚 <i>L_i</i> (m)	平均 N 値 <i>N</i>	周面摩擦力度 τ _{ci} (kN/m²)	$L_i au_{ci}$ (kN/m)	U _c (m)	$U_c L_i au_{ci}$ (kN)
1層目	砂質土	5.5	5	25	138	1.885	259
2 層目	粘性土	4.8	5	30	144	1.885	271
3 層目	砂質土	2.9	15	75	218	1.885	410
4 層目	砂質土	1.2	50	200	240	1.885	452
	計	14.4					1,393

表-6.2.17 周面摩擦力の推定表

したがって、杭の極限押込み支持力Ruは、以下のように推定される。

$$R_u = q_d \cdot A_c + U_c \sum L_i \tau_{ci} = 2,500 \text{kN/m}^2 \times 0.283 \text{m}^2 + 1,393 \text{kN} = 2,100 \text{kN}$$

●極限押込み支持力に対する杭各部の耐力照査

杭頭に作用する軸方向荷重に対して鋼管と改良体が一体化抵抗するよう、極限押込み支持力 に対する杭各部の耐力照査(節突起付き鋼管の付着耐力、グラウトと改良体間のせん断耐力) を行う。

i)節突起付き鋼管の付着耐力RFU

$$R_{FU} = \sum \tau_{fi} \times L_i \times U_s \qquad (6.2.5)$$

ここに、

- R_{FU}:節突起付き鋼管の付着耐力(kN)
- U_s : 鋼管の周長 (m) = $D_s \times \pi$ = 0.2163× π = 0.680m
- *D*_s : 鋼管径 (m) = 0.2163m
- *L_i* : 周面摩擦抵抗を考慮する層厚(m)
- τ_{fi} :各層の鋼管の最大付着応力度 (kN/m²)

$$\tau_{fi} = \left(275\frac{h}{p} + 9\right) \times \sqrt{q_{ui}}$$
(6.2.6)

 $h : 節突起高さ (m) = 0.0025m$

 $p : 節加工間隔 (m) = 0.2m$

qui : 各層の改良体の一軸圧縮強度(kN/m²)

表-6.2.18に節突起付き鋼管の付着耐力 R_{FU}の計算結果を示す。

	土質	層厚 <i>L_i</i> (m)	改良体一軸圧 縮強度 <i>q_{ui}</i> (kN/m ²)	鋼管の最大付 着応力度 τ _{fi} (kN/m ²)	鋼管の周長 <i>Us</i> (m)	$ au_{fi}L_iU_s$ (kN)		
1層目	砂質土	5.5	4,000	787	0.680	2,943		
2 層目	粘性土	4.8	2,000	556	0.680	1,815		
3層目	砂質土	2.9	4,000	787	0.680	1,552		
4層目	砂質土	1.2	10,000	1,244	0.680	1,015		
		14.4				7,325		

表-6.2.18 節突起付き鋼管の付着耐力 R_{FU}

したがって、節突起付き鋼管の付着耐力 R_{FU} は、7,325kN と推定される。

ii)グラウトと改良体間のせん断耐力 R_{GU}

$$R_{GU} = U_g \sum L_i \tau_{g_i}$$
(6.2.7)
ここに、

$$R_{GU} : グラウトと改良体間のせん断耐力 (kN)$$

$$U_g : グラウト体の周長 (m) = D_g \times \pi = 0.239 \times \pi = 0.751m$$

$$D_g : グラウト体外径 (改良体削孔径) (m) = 0.239m$$

$$L_i : 周面摩擦抵抗を考慮する層厚 (m)$$

$$\tau_{gi} : 各層でのグラウトと改良体間の最大せん断強度 (kN/m2)$$

$$\tau_{gi} = 1/8 \times q_{ui}$$
(6.2.8)

$$q_{ui} : 各層の改良体の一軸圧縮強度 (kN/m2)$$

表-6.2.19 にグラウトと改良体間のせん断耐力 RGU の計算結果を示す。

	土質	層厚 <i>L_i</i> (m)	改良体一軸圧 縮強度 <i>q_{ui}</i> (kN/m ²)	改良体の最大 せん断強度 τ _{gi} (kN/m ²)	グラウトの 周長 <i>U_g</i> (m)	$ au_{gi}L_iU_g$ (kN)		
1層目	砂質土	5.5	4,000	500	0.751	2,065		
2 層目	粘性土	4.8	2,000	250	0.751	901		
3層目	砂質土	2.9	4,000	500	0.751	1,089		
4 層目	砂質土	1.2	10,000	1,250	0.751	1,126		
	計	14.4				5,181		

表-6.2.19 グラウトと改良体間のせん断耐力 R_{GU}

したがって、グラウトと改良体間のせん断耐力 R_{GU} は、5,507kN と推定される。

iii)極限押込み支持力Ruに対する杭各部の耐力照査

極限押込み支持力 R_u に対する杭各部の耐力照査結果を表-6.2.20 に示す。杭各部の耐力は 極限押込み支持力を上回る結果となっている。

表-6.2.20 極限押込み支持力 R_u に対する杭各部の耐力照査結果

項目	単 位	値	適 用
地盤から決まる極限押込み支持力 R _u	kN	2,100	
節突起付き鋼管の付着耐力 R_{FU}	kN	7,325	$R_{FU} > R_u$
グラウトと改良体間のせん断耐力 R_{GU}	kN	5,181	$R_{GU} > R_u$

b.極限引抜き支持力の推定

地盤から決まる杭の極限引抜き支持力は、式(6.2.9)によって推定する。

$$P_u = U_c \sum L_i \tau_{ci} \qquad (6.2.9)$$

Pu : 地盤から決まる杭の極限引抜き支持力(kN)

 U_c : 改良体の周長 (m) = $0.6 \times \pi$ = 1.885m

D_c : 改良体造成径(m) = 0.6m

Li:周面摩擦力を考慮する層の層厚(m)

τ_{ci}:周面摩擦力を考慮する層の最大周面摩擦力度(kN/m²)

地盤から決まる極限引抜き支持力は、周面摩擦抵抗の合計であり、表-6.2.17より 1,393kN と 推定される。

c.許容支持力の算定

●許容押込み支持力 Ra の算定

許容押込み支持力は、式(6.2.10)によって算定する。

 $R_a = \frac{\gamma}{n} R_u \qquad (6.2.10)$

ここに、

R_a : 杭頭における杭の軸方向許容押込み支持力(kN)

n : 安全率(常時:3, レベル1地震時:2)

γ : 極限支持力推定法の相違による安全率の補正係数(支持力推定式のため 1.0)

R_u : 地盤から決まる杭の極限押込み支持力(kN) = 2,100kN

STマイクロパイルの許容押込み支持力 Ra を表-6.2.21 に示す。

	極限支持力 R_u (kN)	安全率 <i>n</i>	補正係数 γ	許容押込み支持力 R_a (kN)
常時	2 100	3	1.0	700
レベル1 地震時	2,100	2	1.0	1,050

表-6.2.21 ST マイクロパイルの許容押込み支持力 R_a

●許容引抜き支持力*P*aの算定

許容引抜き支持力は、式(6.2.11)によって算定する。

$$P_a = \frac{1}{n} P_u + W \qquad (6.2.11)$$

ここに、

Pa : 杭頭における杭の軸方向許容引抜き力(kN)

n : 安全率(常時:6, レベル1地震時:3)

 P_u :地盤から決まる杭の極限引抜き支持力(kN) = 1,393kN

W : 杭の有効重量(kN) = 48kN

STマイクロパイルの許容引抜き支持力 Pa を表-6.2.22 に示す。

表6. 2. 22	ST マイクロパイルの許容引抜き支持力 P_a	

	極限支持力	杭の有効重量	安全率	許容引抜き支持力
	P_u (kN)	W (kN)	n	P_a (kN)
常時	1 909	48	6	280
レベル1 地震時	1,393	48	3	512

d.水平方向地盤反力係数k_Hの算定

水平方向地盤反力係数は以下のように算出する。

$$k_H = k_{H0} \left(\frac{B_H}{0.3}\right)^{-3/4} \tag{6.2.12}$$

ここに、

 k_H : 水平方向地盤反力係数 (kN/m³)

$$k_{H0} = \frac{1}{0.3} \alpha E_0 \quad (\text{kN/m}^3)$$

- *E*₀:設計の対象とする位置での地盤の変形係数(kN/m²)で、ここでは、N 値から推定 する。
- α :地盤反力係数の推定に用いる係数で、N値から変形係数E₀ を推定するため、常時
 1、地震時2とする。

 B_H :荷重作用方向に直交する杭の換算載荷幅(m)で、 $\sqrt{D'} / \beta$ とする。

D': 拡径した改良体に期待する杭の水平地盤抵抗幅(水平抵抗に関する計算上の杭径)
 (m) で、表-解 3.8.3 より D'=0.350m とする。

1/β : 水平抵抗に関与する地盤の深さ(m)

$$eta$$
 : 杭の特性値 $\sqrt[4]{rac{k_H D'}{4EI}}$ (m⁻¹)

EI : 鋼管の曲げ剛性で、7,281 (kN・m²)

STマイクロパイルの水平方向地盤反力係数を表-6.2.23に示す。

	-			
屋来旦	上 匠	屋 亘 (m)	水平方向地盤反力	係数 k_H (kN/m ³)
眉 留亏	上貝	眉序(III)	常時	地震時
第1層	砂質土	7.0	50,118	100,236
第2層	粘性土	4.8	50,118	100,236
第3層	砂質土	2.9	150,353	300,706
第4層	砂質土	1.2	501,176	1,002,352

表-6.2.23 ST マイクロパイルの水平方向地盤反力係数

e.ST マイクロパイルの軸方向バネ定数 K_V の推定

軸方向バネ定数は、式(6.2.13)によって推定する。

$$K_V = a \frac{AE}{L} \tag{6.2.13}$$

ここに、

 K_V : 杭の軸方向バネ定数 (kN/m) A : 鋼管の有効断面積 7.026×10⁻³ (m²) E : 鋼管のヤング係数 2.0×10⁸ (kN/m²) L : 鋼管の根入れ長 15.9 (m) a : 以下により算出する (式 (解 3.5.2))。 $a = 0.0165(L/D_s) + 0.0704 = 0.0165 \times 73.5 + 0.0704 = 1.283$ L : 鋼管の根入れ長 15.9 (m), D_s : 鋼管径 0.2163 (m) したがって、 $K_V = 1.283 \times \frac{7.026 \times 10^{-3} \times 2.0 \times 10^8}{15.9} = 113,410$ (kN/m) となる。

4) レベル1地震時の照査結果

①安定照査結果

ST マイクロパイルにより補強した杭基礎のレベル1地震時の安定照査結果を表-6.2.24 に示す。 既設杭および ST マイクロパイルに発生する杭頭反力および水平変位は、各許容値以内である。

т н	\$1 ₽.	用任	橋軸	方向	橋軸直	角方向
· · · · · · · · · · · · · · · · · · ·	記方	毕业	既設杭	STMP	既設杭	STMP
軸方向押込み力 *1	P_N	kN	619 + 605 =1,224	378	624 + 605 =1,229	344
軸方向許容押込み支持力	R_a	kN	1,396	1,050	1,396	1,050
判定			$P_N \leq R_a$ OK	$P_N \leq R_a$ OK	$P_N \leq R_a$ OK	$P_N \leq R_a$ OK
軸方向引抜き力	P_N	kN	-199 + 605 = 406	-224	-205 + 605 = 400	-190
軸方向許容引抜き支持力	P_a	kN	-302	-512	-302	-512
判定			$P_N \leq R_a$ OK	$P_N \leq P_a$ OK	$P_N \leq R_a$ OK	$P_N \leq P_a$ OK
設計地盤面での水平変位	δ	mm	3.7		3.4	
許容水平変位 *2 6		mm	15.0		15.0	
判 定			$\delta \leq \delta_a \text{OK}$		$\delta \leq \delta_a$ OK	
フーチングの回転角	α	rad	0.0	009	0.0007	

表-6.2.24 レベル1地震時の補強基礎の安定照査結果

 *1 既設杭の杭頭反力は、杭~ラーメンモデルで算出された値に、既設構造死荷重による杭頭反力 (5,446kN÷9本 = 605kN/本)を加えたものである。

*2 既設 PC 杭、ST マイクロパイルとも許容水平変位は 15mm であり、補強した杭基礎の許容水平 変位は 15mm とした。

②杭体の応力度照査結果

a.杭体の曲げモーメント分布

b.既設杭の応力度照査

既設杭の杭体の応力度照査結果を表-6.2.25 に示す。杭体(杭頭部および地中部)に発生する応 力度は、許容応力度以内である。

			橋軸方向	橋軸直角方向
	曲げモーメン	$h \mapsto M$ (kN · m)	84.4	103.3
	亡士中	コンクリートの曲げ圧縮応力度 σ_c (N/mm ²)	6.4	7.1
杭	心力皮	鉄筋の引張応力度 σ_s (N/mm ²)	44	69
明 部	新家亡力庄	コンクリートの許容曲げ圧縮応力度σ _{ca} (N/mm ²)	25	25
	計谷心力度	鉄筋の許容引張応力度 σ_{sa} (N/mm ²)	270	270
	判 定		OK	ОК
	曲げモーメン	$h \mapsto M$ (kN · m)	108.4	108.2
	有効プレスト	νλ σ_{ce} (N/mm ²)	8.1	8.1
批	亡士中	コンクリートの曲げ圧縮応力度 σ_c (N/mm ²)	21.9	21.9
中	心力皮	コンクリートの曲げ引張応力度 σ_c '(N/mm ²)	_	—
部	<u> </u>	コンクリートの許容曲げ圧縮応力度 σ_{ca} (N/mm ²)	25	25
	町谷心刀皮	コンクリートの許容曲げ引張応力度 σ_{ca} ' (N/mm ²)	5	5
	判定		OK	OK

表-6.2.25 レベル1地震時の既設杭の杭体応力度照査結果

*1 杭頭部は鉄筋コンクリート断面として照査を行った

*2 曲げモーメントは、杭頭部は杭頭固定、地中部は杭頭ヒンジの値を用いた

c.ST マイクロパイルの応力度照査

ST マイクロパイルの杭体の応力度照査結果を表-6.2.26 に示す。杭体に発生する応力度は、鋼管の許容応力度以内である。

表-6.2.26 レベル1 地震時の ST マイクロパイルの杭体応力度照査結果

	杭頭反力 N (kN)	モーメント M (kN・m)	応力度 σ _s (N/mm²)	許容応力度 σ _{sa} (N/mm ²)	判 定
橋軸方向	378	30.7	144	380	OK
	-224	30.7	-122	-380	ОК
橋軸直角方向	344	30.8	140	380	OK
	-190	30.8	-118	-380	ОК

※ モーメントは杭頭ヒンジと比べて大きい杭頭固定の値を用いた

③ST マイクロパイルの杭頭結合部の照査

杭頭結合部の概要を図-6.2.12に示す。

図-6.2.12 杭頭結合部の概要

●押込み力に対する照査

i.フーチングコンクリートの垂直支圧応力度

$$\sigma_{cv} = \frac{P_c}{W^2} \leq \sigma_{ca} \qquad (6.2.14)$$

ここに、

 σ_{cv} : 垂直支圧応力度 (kN/m²) σ_{ca} : コンクリートの許容支圧応力度 (kN/m²) P_c : 軸方向押込み力 (kN) W : 支圧板の幅 (m)

・橋軸方向

$$\sigma_{cv} = \frac{378}{0.30 \times 0.30} = 4,200 \text{kN/m}^2 = 4.2 \text{N/mm}^2 \leq \sigma_{ca} \quad (15.8 \text{N/mm}^2)$$

• 橋軸直角方向

$$\sigma_{cv} = \frac{344}{0.30 \times 0.30} = 3,822 \text{kN/m}^2 = 3.8 \text{N/mm}^2 \leq \sigma_{ca} \quad (15.8 \text{N/mm}^2)$$

ii.フーチングコンクリートの押抜きせん断応力度

$$\tau_{\nu} = \frac{P_c}{4(W+h) h} \leq \tau_a \qquad (6.2.15)$$

ここに、

τ_ν:垂直方向の押抜きせん断応力度(kN/m²)

 τ_a : コンクリートの許容せん断応力度 (kN/m²)

 P_c :軸方向押込み力(kN)

W : 支圧板の幅 (m)

. . .

h : 垂直方向の押抜きせん断に抵抗するフーチングの有効厚さ(m)

(有効厚さは、ここでは安全側に支圧板から45°の範囲をとることとした。) ・橋軸方向

$$\tau_{v} = \frac{378}{4(0.30 + 0.35)0.35} = 415$$
kN/m² = 0.42N/mm² $\leq \tau_{a} (0.85$ N/mm²)

• 橋軸直角方向

$$\tau_{\nu} = \frac{344}{4(0.30 + 0.35)0.35} = 378 \text{kN/m}^2 = 0.38 \text{N/mm}^2 \le \tau_a \quad (0.85 \text{N/mm}^2)$$

●引抜き力に対する照査

i.フーチングコンクリートの垂直支圧応力度の照査

$$\sigma_{tv} = \frac{P_t}{W^2 - \pi D_s^2 / 4} \le \sigma_{ca} \quad \dots \quad (6.2.16)$$

ここに、

 σ_{tv} : 垂直支圧応力度 (kN/m²) σ_{ca} : コンクリートの許容支圧応力度 (kN/m²) P_t : 軸方向引抜き力 (kN) W : 支圧板の幅 (m) D_s : 鋼管径 (m)

・橋軸方向

 $\sigma_{tv} = \frac{224}{0.3^2 - \pi 0.2163^2 / 4} = 4,206 \text{kN/m}^2 = 4.2 \text{N/mm}^2 \leq \sigma_{ca} \quad (15.8 \text{N/mm}^2)$ $\cdot \text{ fit heigh figh}$ $\sigma_{tv} = \frac{190}{0.3^2 - \pi 0.2163^2 / 4} = 3,568 \text{kN/m}^2 = 3.6 \text{N/mm}^2 \leq \sigma_{ca} \quad (15.8 \text{N/mm}^2)$

ii.フーチングコンクリートの引抜きせん断応力度の照査

$$\tau_{vt} = \frac{140 \text{kN/m}^2 - 0.14 \text{KN/m}^2}{4(0.3 + 0.5)0.5} = 119 \text{kN/m}^2 = 0.12 \text{N/mm}^2 \leq \tau_{at} = \tau_a \quad (0.85 \text{K/mm}^2)$$

$$\tau_{vt} = \frac{190}{4(0.3 + 0.5)0.5} = 119 \text{kN/m}^2 = 0.12 \text{N/mm}^2 \leq \tau_{at} = \tau_a \quad (0.85 \text{K/mm}^2)$$

(6.2.18)

●水平力および曲げモーメントに対する照査
i.フーチングコンクリートの水平支圧応力度の照査
$$\sigma_{ch} = \frac{H}{D_{sl}} + \frac{6M}{D_{sl^2}} \leq \sigma_{ca}$$
ここに、
 $\sigma_{ch} : 水平支圧応力度 (kN/m^2)$
 $\sigma_{ca} : \exists 2 2 2 7 7 7 - 5 0$ 許容支圧応力度 (kN/m^2)
H : 軸直角方向力 (kN)
M : 曲げモーメント (kN・m)

*D*s: 鋼管の外径(m)

l :鋼管のフーチングへの埋込み長(m)

・橋軸方向

$$\begin{aligned} \sigma_{ch} &= \frac{63.5}{0.2163 \times 0.5} + \frac{6 \times 30.7}{0.2163 \times 0.5^2} = 3994 \text{kN/m}^2 = 4.0 \text{N/mm}^2 \leq \sigma_{ca} (15.8 \text{N/mm}^2) \\ \cdot &\texttt{fa} \texttt{m} \texttt{i} \texttt{f} \texttt{h} \texttt{f} \texttt{h} \\ \sigma_{ch} &= \frac{61.3}{0.2163 \times 0.5} + \frac{6 \times 30.8}{0.2163 \times 0.5^2} = 3984 \text{kN/m}^2 = 4.0 \text{N/mm}^2 \leq \sigma_{ca} (15.8 \text{N/mm}^2) \end{aligned}$$

ii.フーチングコンクリートの水平方向の押抜きせん断応力度

$$\tau_h = \frac{H}{h'(2l+D_s+2h')} \leq \tau_a \quad \dots \quad (6.2.19)$$

ここに、

 τ_h :水平方向の押し抜きせん断応力度 (kN/m²)

τ_a : コンクリートの許容押抜きせん断応力度(kN/m²)

H : 軸直角方向力 (kN)

l :鋼管のフーチングへの埋込み長さ(m)

・橋軸方向

$$\tau_{h} = \frac{63.5}{0.3919(2 \times 0.5 + 0.2163 + 2 \times 0.3919)} = 81 \text{kN/m}^{2} = 0.08 \text{N/mm}^{2} \leq \tau_{a} (0.85 \text{N/mm}^{2})$$

・橋軸直角方向

$$\tau_h = \frac{01.5}{0.3919 \left(2 \times 0.5 + 0.2163 + 2 \times 0.3919\right)} = 78 \text{kN/m}^2 = 0.08 \text{N/mm}^2 \le \tau_a \quad (0.85 \text{N/mm}^2)$$

iv) 支圧板の設計

支圧板およびスチフナの諸元は、ここでは、極限支持力に相当する杭頭反力が作用したとき に必要な諸元とし、表・解 3.8.3 により設定した。

支圧板の必要厚さは、支圧板の単位幅当たりに生じる曲げモーメントを簡便に鋼管縁からの 片持ち梁として算定して検討する。支圧板に生じる単位幅当たりの最大曲げモーメントは次式 により求める。

$$M_{max} = \frac{1}{2} \left(\frac{W - D_s}{2} \right)^2 p \qquad (6.2.20)$$

ここに、

 M_{max} :支圧板の最大曲げモーメント (kN・m)

W : 支圧板の幅 (m) = 0.30m

$$D_s$$
:鋼管の外径(m) = 0.2163m

p : 支圧板単位幅当たりに発生する分布荷重(kN/m)

計算の結果、支圧板に生じる最大曲げモーメント *M_{max}*は、レベル1 地震時の橋軸方向で 3.678kN.m、橋軸直角で 3.347kN.m である。

次に、支圧板の必要厚さを次式により求める。

支圧板必要厚さ
$$t = \sqrt{\frac{M_{max}}{\sigma_a} \times 6}$$
 (6.2.21)

ここに、

$$\sigma_a$$
:支圧板 (SM490)の許容曲げ応力度 レベル1地震時 277,500kN/m²
・橋軸方向の支圧板必要厚さ t $\sqrt{\frac{3.678}{277500} \times 6} \times 1000 = 8.9 \text{ mm}$
・橋軸直角方向の支圧板必要厚さ t $\sqrt{\frac{3.347}{277500} \times 6} \times 1000 = 8.5 \text{ mm}$

したがって、支圧板の厚さは16mmで安全である。

- (5) 補強基礎のレベル2地震時の照査
- 1) 作用荷重

フーチング底面における作用荷重を表-6.2.27(橋軸方向)、表-6.2.28(橋軸直角方向)に示す。

水平震度 曲げモーメント 鉛直荷重 Vo 重心 水平荷重 (kN)Ho(kN)y (m) $Mo(kN \cdot m)$ 記号 値 上部構造 W_U 3,283 k_h 0.83 2,7259.00 24,524 橋脚躯体 W_P 1,239 k_h 0.83 1,028 6.726,909 フーチング W_F 2,800 k_h 0.701,960 1.001,960 上載土砂 W_S 938 — _ _ _ ____ 合 計 8,260 _ 5,71333,393 ____ _

表-6.2.27 補強基礎のフーチング底面における作用外力(レベル2地震時:橋軸方向)

表-6.2.28 補強基礎のフーチング底面における作用外力(レベル2地震時:橋軸直角方向)

	鉛直荷重 16	水平類	雲度	水平荷重	重心	曲げモーメント
	(kN)	記号	値	<i>Ho</i> (kN)	y (m)	$Mo(kN \cdot m)$
上部構造 W _U	3,283	k_h	0.90	2,955	10.70	31,615
橋脚躯体 WP	1,239	k_h	0.90	1,115	6.72	7,491
フーチング W _F	2,800	k_h	0.70	1,960	0.71	1,960
上載土砂 Ws	938		_	_	_	
合計	8,260		_	6,030	_	41,067

荷重分担を考慮した作用外力の集計を表-6.2.29 に示す。実際の構造解析においては、既設杭と ST マイクロパイルが共同で負担する荷重 (△ V_D, Ho, Mo) をフーチング底面に作用させて各杭の杭頭反 力等を算出し、既設構造死荷重 V_Dによる既設杭の杭頭反力を別途求めておいて、合算して既設杭の 杭頭反力を算出している。

表-6.2.29 補強基礎のフーチング底面における作用外力の集計(レベル2地震時)

		橋軸方向	橋軸直角方向
既設杭のみで負担する鉛	直荷重 VD(kN)	5,446	5,446
既設杭および ST マイ	鉛直荷重 $ riangle V_D$ (kN)	2,814	2,814
クロパイルで負担する	水平荷重 Ho (kN)	5,713	6,030
作用荷重	曲げモーメント Mo(kN・m)	33,393	41,067

注) $V_D = V_D + \triangle V_D$

*V*_D : 既設構造の死荷重(上部構造重量+橋脚重量+既設フーチング重量) △*V*_D: 増しフーチング重量と上載土砂による鉛直荷重の増分

2) 設計定数

①杭の軸方向抵抗特性

既設杭および ST マイクロパイルの軸方向抵抗特性は、軸方向バネ定数 K_{VE} を初期勾配とし、 支持力の上限値 P_{NU} , P_{TU} を有する弾塑性型としてモデル化する。

- a 既設杭の軸方向抵抗特性
 - i) 既設杭の軸方向バネ定数 KvE

 $K_{VE} = 309,940$ (kN/m)

ii) 既設杭の支持力の上限値

既設杭の支持力の上限値を表-6.2.30 に示す。既設杭には既設構造死荷重による軸方向圧縮力 ($\Delta P_N = V_D$ /既設杭本数)として作用していることから、実際の解析においては補正を行っ た値を上限値として用いる。

項 目	値
既設構造死荷重による軸方向圧縮力 $ riangle P_N$ (kN)	5,446/9=605
押込み支持力の上限値 <i>P_{NU}</i> (kN) ※非線形解析に用いる値	2,829 - 605 = 2,224
引抜き支持力の上限値 <i>P_{TU}</i> (kN) ※非線形解析に用いる値	831 + 605 = 1,436

表-6.2.30 既設杭の支持力の上限値

- b. STマイクロパイルの軸方向抵抗特性
 - i) STマイクロパイルの軸方向バネ定数KvE

 $K_{VE} = 113,410$ (kN/m)

ii) ST マイクロパイルの押込み支持力の上限値 P_{NU}

押込み支持力の上限値は、以下に示す地盤から決まる極限支持力、鋼管耐力の最小値とする。

 $P_{NU} = min(R_U, R_{PU}) \tag{6.2.22}$

ここに、

PNU: 押込み支持力の上限値(kN)

R_U:地盤から決まる杭の極限押込み支持力(kN)

R_{PU}: 杭体(鋼管)の耐力(kN)

●地盤から決まる杭の極限押込み支持力R_U

 $R_U = 2,100 \text{kN}$

●杭体(鋼管)の耐力*R_{PU}*

 $R_{PU} = \sigma_y \times A_s = 440 \times 7.026 \times 10^{-3} \times 10^3 = 3,091$ kN

以上より、
$$P_{NU} = min(R_U, R_{PU}) = 2,100$$
kN となる。

iii) STマイクロパイルの引抜き支持力の上限値PTU

引抜き支持力の上限値は、以下に示す地盤から決まる極限支持力に杭の有効重量を加えた値 と、鋼管耐力のうち、最小値として求める。

 $P_{TU} = min(P_U + W, P_{PU}) \qquad (6.2.23)$ $\Xi \subset \mathcal{V}_{\zeta}$

 P_{TU} :引抜き支持力の上限値(kN)

 P_U :地盤から決まる杭の極限引抜き支持力 (kN)

W: 抗の有効重量(kN) = 48kN

 P_{PU} : 杭体(鋼管)の耐力(kN) = R_{PU} = 3,091kN

 $P_U = 1,393$ kN

 $P_U + W = 1,393 + 48 = 1,441 \text{ kN}$

以上より、 $P_{TU} = min(P_U + W, P_{PU}) = 1,441$ kN となる。

②杭の軸直角方向抵抗特性

既設杭およびSTマイクロパイルの軸直角方向抵抗特性は、地震時保有水平耐力法に用いる 平方向地盤反力係数 k_{HE} を初期勾配とし、水平地盤反力度の上限値 p_{HU} を有する弾塑性型とし てモデル化する。なお、実際のフレーム解析において各節点に設定するバネは、これら k_{HE} , p_{HU} に杭径、要素長を乗じる必要があるが、STマイクロパイルの場合、杭径としては改良体の水平 地盤抵抗幅D'(水平抵抗に関する設計上の杭径)を用いることに注意しなければならない。

i) 水平方向地盤反力係数k_{HE}

地震時保有水平耐力法に用いる水平方向地盤反力係数k_{HE}は、次のように求める。

 $k_{HE} = \eta_k \alpha_k k_H \qquad (6.2.24)$ $z \geq l z_k$

kHE : 地震時保有水平耐力法に用いる水平方向地盤反力係数(kN/m³)

ηk : 群杭効果を考慮した水平方向地盤反力係数の補正係数 (=2/3)

αk : 単杭における水平方向地盤反力係数の補正係数 (=1.5)

k_H : 地震時の水平方向地盤反力係数 (kN/m³)

●既設杭の水平方向地盤反力係数k_{HE}

地震時保有水平耐力法に用いる既設杭の水平方向地盤反力係数を表-6.2.31に示す。

				-112 0-11 12	
	地盤の 種類	層厚 (m)	地震時の水平方向 地盤反力係数 k _H (kN/m ³)	補正係数 $\eta_k \alpha_k$	地震時保有水平耐力法に 用いる水平方向地盤反力 係数 <i>k_{HE}</i> (kN/m ³)
第1層	砂質土	7.0	30,620	2/3×1.5=1.0	30,620
第2層	粘性土	4.8	30,620	2/3×1.5=1.0	30,620
第3層	砂質土	2.9	91,900	2/3×1.5=1.0	91,900
第4層	砂質土	1.2	306,340	2/3×1.5=1.0	306,340

表-6.2.31 地震時保有水平耐力法に用いる水平方向地盤反力係数

●STマイクロパイルの水平方向地盤反力係数 K_{HE}

地震時保有水平耐力法に用いる ST マイクロパイルの水平方向地盤反力係数を表-6.2.32 に示す。

	地盤の 種類	層厚 (m)	地震時の水平方向 地盤反力係数 <i>k_H</i> (kN/m ³)	補正係数 $\eta_k \alpha_k$	地震時保有水平耐力法に 用いる水平方向地盤反力 係数 <i>k_{HE}</i> (kN/m ³)
第1層	砂質土	7.0	100,236	2/3×1.5=1.0	100,236
第2層	粘性土	4.8	100,236	2/3×1.5=1.0	100,236
第3層	砂質土	2.9	300,706	2/3×1.5=1.0	300,706
第4層	砂質土	1.2	1,002,352	2/3×1.5=1.0	1,002,352

表-6.2.32 地震時保有水平耐力法に用いる水平方向地盤反力係数

ii) 水平地盤反力度の上限値 p_{HU}

地震時保有水平耐力法に用いる水平地盤反力度の上限値 pHU は、次のように求める。

$$p_{HU} = \eta_p \alpha_p p_U \tag{6.2.25}$$

pHU : 地震時保有水平耐力法に用いる水平地盤反力度の上限値(kN/m²)

η_p: 詳杭効果を考慮した水平地盤反力度の上限値の補正係数

粘性土地盤 $\eta_p = 1.0$ 砂質地盤 $\eta_p \alpha_p = 荷重載荷直角方向の杭中心間隔/杭径(ただし、<math>\leq \alpha_p$) (ST マイクロパイルの場合、杭径は改良体の水平地盤抵抗幅 D' とする)

α_p: 単杭における水平地盤反力度の上限値の補正係数

粘性土地盤 $\alpha_p = 1.5$ 、砂質地盤 $\alpha_p = 3.0$

 p_U : 地震時の受働土圧強度 (kN/m²)

水平地盤反力度の上限値の比率に関しては、既設杭径とSTマイクロパイルの改良体水平地盤 抵抗幅*D*'(350mm)の比が1.7であり、レベル2地震時における水平地盤反力度の上限値に関 しては、道示IVに基づいて設定することとした。

•	橋軸力	Ī	句
			-

1列目(最前列)STマイクロパイル	2,333÷350=3.0(上限値)
2,4,6 列目 既設杭	2,000÷600=3.0(上限値)
3,5 列目 ST マイクロパイル	1,500÷350=3.0(上限値)
6列目(最後列)STマイクロパイル	2,333÷350=3.0(上限値)
・橋軸直角方向	
1列目(最前列)STマイクロパイル	2000÷350=3.0(上限値)
2,4,6 列目 既設杭	$1500 \div 600 = 2.5$
3,5 列目 ST マイクロパイル	1,500÷350=3.0(上限値)
6列目(最後列)STマイクロパイル	2,000÷350=3.0(上限値)

	地盤の 種類 (JU - 24 - 1	せん断	壁面摩	単位体	亚角 [.	云禹 1.17	水平地盤反力度の上限値						
地盤の 種類		層厚	粘看力	抵抗角	擦角	積重量	(文側工) 工 仮 粉	文側工圧		橋軸方向			橋軸直角方向		
		(m)	C (kN/m ²)	ϕ	δ_E	γ'		强度 p_u	$n = \alpha$	<i>р_{НU}</i> (]	p_{HU} (kN/m ²)		<i>р_{НU}</i> (]	kN/m ²)	
				(°)	(°)	(kN/m ³)	\mathbf{n}_{EP}	(KIN/m²)	η pα p	_	2,4,6 列	ηραρ		2,4,6 列	
第1層	砂質土	7.0	0	23	-3.8	9	2.528	$\frac{136.51}{295.78}$	3.0	$\begin{array}{c} 409.53 \\ 887.34 \end{array}$	$204.77 \\ 443.67$	2.5	$341.28 \\ 739.45$	$170.64\ 369.73$	
第2層	粘性土	4.8	30	0	0.0	8	1.000	$177.00 \\ 215.40$	1.5	$265.50 \\ 323.10$	$265.50 \\ 323.10$	1.5	$265.50 \\ 323.10$	$265.50 \\ 323.10$	
第3層	砂質土	2.9	0	30	-5.0	9	3.505	$544.68 \\ 625.99$	3.0	$1634.04 \\ 1877.97$	$817.02 \\ 938.99$	2.5	$\frac{1361.70}{1564.98}$	$680.85 \\782.49$	
第4層	砂質土	1.2	0	40	-6.7	10	5.996	$\frac{1070.89}{1142.84}$	3.0	$3212.67 \\ 3428.52$	$1606.34 \\ 1714.26$	2.5	2677.23 2857.10	$\frac{1338.61}{1428.55}$	

表-6.2.33 既設杭の水平地盤反力度の上限値

表-6.2.34 ST マイクロパイルの水平地盤反力度の上限値

			しい はん断 壁面摩 単位体 一番 一番					亚禹 1.17	水平地盤反力度の上限値						
	地盤の	層厚	粘着力	抵抗角	擦角	積重量	(文)割工 (二)反数	文側工圧		橋軸方向			橋軸直角方向		
	種類	(m)	$\frac{C}{(kN/m^2)}$	φ	δ_E	γ'		短度 p_u	$\eta_{\mu} \alpha_{\mu}$	<i>p_{HU}</i> (]	$\kappa N/m^2$)	$n = \alpha =$	<i>р_{НU}</i> (]	kN/m ²)	
				(°)	(°)	(kN/m ³)	I EP	(KIN/M ²)	ηpαp	1列目	3,5,7 列	ηραρ	1列目	3,5,7列	
第1層	砂質土	7.0	0	23	-3.8	9	2.528	$\frac{136.51}{295.78}$	3.0	$\begin{array}{c} 409.53 \\ 887.34 \end{array}$	$204.77 \\ 443.67$	3.0	$\begin{array}{c} 409.53 \\ 887.34 \end{array}$	$\begin{array}{c} 204.77 \\ 443.67 \end{array}$	
第2層	粘性土	4.8	30	0	0.0	8	1.000	$177.00 \\ 215.40$	1.5	$265.50 \\ 323.10$	$265.50 \\ 323.10$	1.5	$265.50 \\ 323.10$	$265.50 \\ 323.10$	
第3層	砂質土	2.9	0	30	-5.0	9	3.505	$544.68 \\ 625.99$	3.0	$\frac{1634.04}{1877.97}$	$817.02 \\ 938.99$	3.0	$\frac{1634.04}{1877.97}$	817.02 938.99	
第4層	砂質土	1.2	0	40	-6.7	10	5.996	$\frac{1070.89}{1142.84}$	3.0	3212.67 3428.52	$1606.34 \\ 1714.26$	3.0	3212.67 3428.52	$1606.34 \\ 1714.26$	

③杭体の曲げモーメント M~曲率 ø 関係

a. M~φ算出方法

既設 PC 杭の *M*~ ø関係は道示IVのコンクリート系の杭を準用してトリリニア型、ST マイク ロパイルの M~ ø 関係は道示IVの鋼管杭に基づいてバイリニア型としてモデル化する。

既設 PC 杭の *M*~ ø関係の計算に用いる軸力は、道示IVのコンクリート系の杭に準じ、杭群図 心位置から押込み側の杭では死荷重が作用したときの杭頭反力とし、引抜き側では軸力を0とする。 また、ST マイクロパイルの *M*~ ø関係の計算に用いる軸力は、道示IVの鋼管杭に準じ、死荷重が 作用したときの杭頭反力とした。

ここで、各杭の死荷重分担の計算方法は以下のように行った。

b. 既設杭および ST マイクロパイルの *M*~ φ関係

既設杭および ST マイクロパイルの *M*~ *ø*関係を表-6.2.32~6.2.33 に示す。ST マイクロパイルの *M*~ *ø*算定式は、4.2.4 によるものとした。

鋼材換算制			換算断	軸力 = 0kN/本						軸力 = 7,337kN/9本 = 815kN/本					
PC 鋼線	710° /51	換异 面積 ^{注 2)} (m ²)	^{奥异町} 面2次 面積 _{モーい}	ひび割れ時		降伏時		終局時		ひび割れ時		降伏時		終局時	
	ハ、1 <i>川</i> 筋 ^{注1)}		注 ₂) (m ⁴)	M_c (kN · m)	φ _c (1/m)	M_y (kN · m)	φ _y (1/m)	M_u (kN · m)	ϕ_u (1/m)	M_c (kN · m)	φ _c (1/m)	M_y (kN · m)	φ _y (1/m)	M_u (kN · m)	ϕ_u (1/m)
$\phi 9$ 26本	$\phi 4$ ctc 110	0.157	0.0054	208	$1.025 \\ imes 10^{.3}$	374	$5.902 imes 10^{\cdot 3}$	469	$1.973 imes 10^{-2}$	299	$1.474 \\ imes 10^{-3}$	534	$6.619 imes 10^{\cdot 3}$	610	$1.408 \\ imes 10^{-2}$

表-6.2.35 既設杭の曲げモーメント~曲率関係

注1) スパイラル鉄筋の降伏強度は σ_{sy} =300 (kN/m²) とする。

注2)換算断面積および換算断面2次モーメントはPC鋼材も考慮した値である。

199

軸力 = 923kN/12本 = 77kN/本 断面 全塑性 鋼管 降伏時 全塑性時 係数 断面積 板厚 t 断面係数 鋼種 公称径 A (m²) Z_e 注2) ϕ_y ' Z_{p} (m³) 注1) M_{y} M_p ϕ_y D_s (m³) (mm) $(kN \cdot m)$ (1/m) $(kN \cdot m)$ (1/m) (mm) STKT 7.026 imes $3.397 \times$ $4.551 \times$ 216.3 2.002×10^{-2} $2.748 imes 10^{-2}$ 14611.0200590 10^{-3} 10^{-4} 10^{-4}

表-6.2.36 ST マイクロパイルの曲げモーメント~曲率関係

注1) 鋼管の降伏強度は σ_{sy} =440N/mm²である。

注2) 鋼管の板厚は腐食しろとして 1mm 考慮した値である。

④フーチング前面地盤の水平抵抗特性

フーチング周辺の埋戻しは十分締め固めるものとし、非液状化時においては、フーチング前面 地盤の水平抵抗特性を考慮するものとする。

道示Ⅳに準じて算定したフーチング前面地盤の水平抵抗特性を表・6.2.37に示す。

				-		1		
		水平方向	受働土	フーチン	地盤面	受働土圧	水平地盤	水平地盤
		地盤反力	圧係数	グの前面	からの	強度 p _{EP}	反力度の	反力度の
		係数k _{HE}	K_{EP}	有効幅 B e	深さ <i>z</i>	(kN/m^2)	上限値の	上限值
		(kN/m ³)		(m)	(m)		割増し係	p_{HU}
							数 α_p	(kN/m^2)
	フーチング				1.0	4 5 5 1	1.000	40.05
长曲十六	上面	10.050	2.528	8.0	1.0	40.01	1.063	48.35
憍毗力问	フーチング	13,376			2.0	100 50	1 1 0 0	100.10
	下面				3.0	136.53	1.188	162.13
	フーチング				1.0	45 51	1.071	49.70
橋軸直角	上面	14.009	0 500	7.0	1.0	40.01	1.071	48.76
方向	フーチング	14,063	2.528	7.0	2.0	196 59	1.01.4	105 50
	下面				3.0	130.93	1.214	165.78

表-6.2.37 フーチング前面地盤の水平地盤反力度の上限値 *p_{HU}*

⑤既設 PC 杭のせん断耐力

既設 PC 杭のせん断耐力の算定方法は、ここでは参考資料 ¹⁾に準じるものとする。中詰めコン クリート補強部および無補強部のせん断耐力を表-6.2.38 に示す。

	項目	記号	単位	値
	杭本体のコンクリートの負担するせん断耐力	Sc	kN	100
中詰コンクリート	杭本体内スパイラル鋼線の負担するせん断耐力	$S\!s$	kN	30
補強部 (フーチング底面~	中詰めコンクリートの負担するせん断耐力	Hca	kN	62
1.2m 区間)	中詰め補強帯鉄筋が負担するせん断耐力	Has	kN	132
	合計			324
無補強部	杭本体のコンクリートの負担するせん断耐力	Sc	kN	121
(フーチング底面	杭本体内スパイラル鋼線の負担するせん断耐力	$S\!s$	kN	30
から Z=1.2m 以深)	合 計			151

表-6.2.38 既設 PC 杭の1本当たりのせん断耐力

(3) レベル2地震時の照査結果

橋軸方向および橋軸直角方向の照査結果を図-6.2.13~6.2.14、表-6.2.39~6.2.40に示す。

慣性力~上部構造慣性力作用位置の水平変位の関係によれば、全ての既設杭が杭体の降伏に達した 時点で水平変位が急増しており、全ての既設杭が降伏したときが補強した杭基礎の降伏と判定できる。 水平変位が急増したとき(全ての既設杭が降伏)の水平荷重は、設計水平震度に相当する照査荷重を 上回っており、補強した杭基礎はレベル2地震に対して安全と判断できる。

なお、本計算例では、照査荷重に対して基礎の降伏には余裕があるが、既設杭のせん断耐力の照査 で ST マイクロパイルの杭本数が決まっている。

水平 震度	水平荷重 (kN)	杭頭にお ける水平 変位 (mm)	フーチング の回転角 (rad)	上部構造の慣 性力作用位置 における水平 変位(m)	杭基礎の状態
0.830	5,713	10	0.00258	0.033	設計水平荷重に達する (杭基礎は降伏に達していない)
_	7,484	18	0.00357	0.050	既設杭6列目 引抜き支持力の上限値に達した
_	7,656	19	0.00370	0.052	増し杭1列目(最前列) 杭体の降伏に達した
_	7,713	20	0.00375	0.053	既設杭 4,6 列目 杭体の降伏に達した
_	8,341	26	0.00421	0.064	既設杭2列目 杭体の降伏に達した (全ての既設杭降伏):基礎の降伏
_	8,513	28	0.00434	0.067	増し杭 3,5,7 列目 杭体の降伏に達した
_	8,513	28	0.00434	0.067	増し杭7列目(最後列) 引抜き支持力の上限値に達した
_	8,570	29	0.00447	0.069	増し杭1列目(最前列) 杭体の全塑性モーメントに達した
_	8,741	32	0.00479	0.076	既設杭 4,6 列目 杭体の終局に達した
_	8,855	36	0.00500	0.081	既設杭2列目 杭体の終局に達した
_	8,913	38	0.00510	0.083	既設杭2列目 押込み支持力の上限値に達した

図-6.2.13 レベル2地震時の慣性カーン部構造の慣性カ作用位置の水平変位(橋軸方向)

					既設杭			増し杭(STマイクロパイル)			
	-					$(PC 杭 \phi 600mm : 9 本)$ 2 列目 4 列目 6 列目		(鋼管径 216.3mm,造成径 600mm: 12本)			
	最大曲げ	モーメント	М	kN•m∕本	171	1 7 1	171	76	595日 64	595日 64	64
基礎の	降伏曲げモーメント		<i>M</i> _y	kN•m/本	534	534	374	146	146	146	146
	判定			_	$\begin{array}{c} M \leq M_y \\ \text{OK} \end{array}$						
耐					杭体は降伏しない			杭体は降伏しない			
力の照査	杭頭の鉛直反力		P_N	kN/本	1,409	210	-990	960	369	-216	-806
	支持力の上限値		P_{NU}	kN/本	2,224 (-1,436) ** 2,100 (-1,441)			1,441) *			
	判定		_	_	$P_N \leq P_{NU}$ OK						
					支持力の上限値に達しない			支持力の上限値に達しない			
変	杭頭における水平変位		δ_{FO}	m	0.010						
位	フーチングの回転角		α_{FO}	rad	0.003						
部材の照査		杭に生じるせん断力の合計	S	kN	2,482			1,553			
	杭頭部	杭のせん断耐力の合計	P_S	kN	2,916		_				
		判定		_	$S \leq P_S$ OK		_				
		杭に生じるせん断力の合計	S	kN	835		_				
	地中部	也中部 杭のせん断耐力の合計 Ps		kN	1,359		_				
		判定 —		_	$S \leq P_S$ OK				_		

表-6.2.39 レベル2地震時に対する照査結果(橋軸方向)

※ ()内は引抜き支持力の上限値を示す

水平 震度	水平荷重 (kN)	杭頭にお ける水平 変位 (mm)	フーチング の回転角 (rad)	上部構造の慣 性力作用位置 における水平 <u>恋(c</u> (m)	杭基礎の状態		
0.900	6,030	11	0.00220	<u>爱证</u> (III) 0.034	設計水平荷重に達する (杭基礎は降伏に達していない)		
_	7,115	17	0.00266	0.045	既設杭6列目 引抜き支持力の上限値に達した		
_	7,115	17	0.00266	0.045	既設杭 4,6 列目 杭体の降伏に達した		
_	7,236	18	0.00273	0.047	増し杭1列目(最前列) 杭体の降伏に達した		
_	7,778	23	0.00305	0.056	既設杭2列目 杭体の降伏に達した (全ての既設杭降伏):基礎の降伏		
_	7,959	26	0.00315	0.059	増し杭 3,5,7 列目 杭体の降伏に達した		
_	8,080	27	0.00322	0.062	増し杭1列目(最前列) 杭体の全塑性モーメントに達した		
_	8,200	30	0.00329	0.065	既設杭 4,6 列目 杭体の終局に達した		
_	8,261	31	0.00333	0.066	既設杭2列目 杭体の終局に達した		
_	8,622	42	0.00352	0.080	既設杭 3,5,7 列目 杭体の全塑性モーメントに達した		

図-6.2.14 レベル2地震時の慣性カーン部構造の慣性カ作用位置の水平変位(橋軸直角方向)

					既設杭			増し杭 (ST マイクロパイル)			
-					(PC 杭			(鋼管径 216.3mm,造成径 600mm:12本)			
			1		2列目	4列目	6列目	1列目	3列目	5列目	7列目
基礎の	最大曲げモーメント		М	kN・m/本	293	269	269	95	80	80	80
	降伏曲げモーメント		<i>M</i> _y	kN・m/本	534	534	374	146	146	146	146
	判定		_	_	$M \leq M_y$ OK	$M \leq M_y$ OK	$M \leq M_y$ OK	$M \leq M_y$ OK	$M \leq M_y$ OK	$M \leq M_y$ OK	$M \leq M_y$ OK
耐	1.1/2				杭体は降伏しない			 杭体は降伏しない			
力 の	杭頭の鉛直反力		P_N	kN/本	1,572	210	-1,152	955	368	-214	-800
の照査	支持力の上限値		P_{NU}	kN/本	2,224 (-1,436) *			2,100 (-1,441) *			
	判定			_	$P_N \leq P_{NU}$	$P_N \leq P_{NU}$	$P_N \leq P_{NU}$	$P_N \leq P_{NU}$	$P_N \leq P_{NU}$	$P_N \leq P_{NU}$	$P_N \leq P_{NU}$
					支持力の上限値に達しない			支持力の上限値に達しない			
変	杭頭における水平変位		δ_{FO}	m	0.011						
位	フーチングの回転角		α_{FO}	rad	0.002						
部材の照査		杭に生じるせん断力の合計	S	kN	2,767			1,746			
	杭頭部	杭のせん断耐力の合計	P_S	kN	2,916		-				
		判定 $ S \leq P_S$ OK		Z	-						
		杭に生じるせん断力の合計	S	kN	1,271		_				
	地中部	邓 杭のせん断耐力の合計 P_S kN		1,359		_					
		判定		_	$S \leq P_S$ OK		-				

表-6.2.40 レベル2地震時に対する照査結果(橋軸直角方向)

※ ()内は引抜き支持力の上限値を示す

6.3 フーチングの補強設計

6.3.1 増しフーチングの構造

本計算例での増しフーチングの構造は、フーチング土被りに対する制約はないものと仮定し、図 -6.3.1 のような上面増し厚とする。また、増しフーチングに用いる材料は、既設部材の応力度に制限 されることから、本計算例では表-6.3.1 に示すように、既設フーチングと同一の材料とした。

既設フーチングと増しフーチングの一体化に関しては、本計算例では次のように仮定する。

- ・フーチング下面における既設鉄筋との接続は、既設フーチングをはつり既設鉄筋を露出させた後、 新設鉄筋と機械式継手やエンクローズ溶接によって接合するものとする。
- ・既設フーチングと増しフーチングとの一体化に関しては、ずれ止め鉄筋の設置、コンクリート表面 のチッピング目粗しによって一体化させるものとする。

材 料	規 格
コンクリート	設計基準強度 $\sigma_{ck} = 21 \text{ N/mm}^2$
鉄筋	SD295, 降伏点 σ_{sy} =295 N/mm ²

表-6.3.1 増しフーチングに用いる材料

6.3.2 レベル1地震時の照査

- (1) レベル1地震時の曲げモーメントに対する照査
 - 設計の考え方

曲げモーメントに対する抵抗断面は、既設フーチングと増しフーチングの合計の断面で作用外力 に対して抵抗させるものとする。

一方、既設フーチングには補強前の死荷重および杭頭反力によって応力が発生しており、補強後 もそのまま残留することが考えられる。そこで、参考資料」に準じ、レベル1地震時におけるフー チングの応力度照査では、図-5.2.1に示すように、①既設構造死荷重(上部構造・橋脚・既設フー チングの自重)による引張応力度 *σ s1*、②増しフーチング・上載土砂の自重とレベル1地震動によ って生じる引張応力度 *σ s2*をそれぞれ求め、合計が許容応力度以内となることを照査する。

図-6.3.2 レベル1地震時におけるフーチングの応力度照査手順

2) 補強前の死荷重状態における曲げモーメントと応力度 補強前の死荷重状態において生じるフーチング曲げモーメントとフーチング下面の応力度計算 結果を表-6.3.2 に示す。

		死荷	重時	
			橋軸方向 (下側引張)	橋軸直角方向 (下側引張)
	上載土砂	$(kN \cdot m)$	—	—
フーチング	フーチング	$(kN \cdot m)$	-172	-218
曲げモーメント	杭頭の鉛直反	カ (kN・m)	1,185	1,549
	曲げモーメント合計 (kN・m)		1,013	1,331
	☆7++ <u>+</u> `\+	有効幅 b (m)	5.00	4.40
		高さ <i>h</i> (m)	1.50	1.50
	印机小石	かぶり <i>do</i> (m)	0.15	0.15
応力度計算		有効高 d (m)	1.35	1.35
	鉄筋量		D25@125	D29@125
	曲げ応力度	σ_c (N/mm ²)	1.0	1.3
		σ_s (N/mm ²)	41	49

表-6.3.2 補強前死荷重による応力度計算結果

- 3) 補強後のレベル1地震動によるフーチング曲げモーメントと応力度
 - ①レベル1地震時の杭頭反力

レベル1地震時の杭頭反力作用位置を図-6.3.3、杭頭反力の集計を表-6.3.3に示す。

図-6.3.3 杭頭反力作用位置

		フー	フーチング下側引張			フーチング上側引張		
		1 列目	2 列目	3 列目	5 列目	6列目	7列目	
		STMP	既設杭	STMP	STMP	既設杭	STMP	
橋軸方向	杭頭の鉛直反力 (kN)	378×4= 1,512	619×3= 1,856 ^{**}	177×2= 353	-23×2= -46	-199×3= -596 [*]	-224×4= -894	
橋軸直角	杭頭の鉛直反力 (kN)	344×4= 1,377	624×3= 1,873 ^{**}	166×2= 331	-12×2 -23	-205×3= -613 [*]	-190×4= -759	

表-6.3.3 レベル1地震時の杭頭反力の集計

※ 既設杭の杭頭反力は、既設構造の死荷重による反力を考慮しない値である

②フーチングに作用する曲げモーメントと応力度

レベル1 地震動によってフーチング照査断面に作用する曲げモーメント、応力度計算結果を表 -6.3.4、図-6.3.4に示す。

		橋軸	方向	橋軸直角方向			
				フーチング	フーチング	フーチング	フーチング
				下側引張	上側引張	下側引張	上側引張
	上載土砂		$(kN \cdot m)$	-506	-506	-512	-512
囲け エーメ	増しフーチン	イグ	$(kN \cdot m)$	-1,148	-1,148	-1,087	-1,087
モーメント	杭頭の鉛直反力		$(kN \cdot m)$	4,510	-2,316	4,834	-2,305
· ·	曲げモーメント合計		$(kN \cdot m)$	2,856	-3,971	3,236	-3,903
	部材寸法	有効幅	<i>b</i> (m)	6.00	4.15	5.40	3.55
		高さ	<i>h</i> (m)	2.00	2.00	2.00	2.00
		かぶり	do (m)	0.15	0.15	0.15	0.15
応力度		有効高	<i>d</i> (m)	1.85	1.85	1.85	1.85
計算	鉄筋量			$D25:49 \pm (2482830 \text{mm}^2)$	D29:14本 ^(899360mm²)	D29:43本 ^(2762320mm²)	D32:14 本 (1111880mm ²)
	曲ば内中度	σ _c	(N/mm ²)	1.3	3.5	1.5	3.4
	囲け応力度	σ_s	(N/mm ²)	67	253	69	203

表-6.3.4 レベル1地震動による応力度計算結果

図-6.3.4 レベル1地震時における有効幅、鉄筋配置量

4) レベル1地震時の曲げモーメントに対する照査結果

レベル1地震時の曲げモーメントに対するフーチングの照査結果を表 6.3.5 に示す。

			補強前死荷重 による応力度	補強後レベル1地 震動による応力度	合計	照査
橋	フーチング	σ_c (N/mm ²)	1.0	1.3	2.3	$\leq \sigma_{ca} (10.5 \text{N/mm}^2) \text{OK}$
軸	下側引張	σ_s (N/mm ²)	41	67	108	$\leq \sigma_{sa}$ (270N/mm ²) OK
方	フーチング	σ_c (N/mm ²)	_	3.5	3.5	$\leq \sigma_{ca} (10.5 \text{N/mm}^2) \text{OK}$
曰	上側引張	σ_s (N/mm ²)	_	253	253	$\leq \sigma_{sa}$ (270N/mm ²) OK
橋	フーチング	σ_c (N/mm ²)	1.3	1.5	2.8	$\leq \sigma_{ca} (10.5 \text{N/mm}^2) \text{OK}$
軸	下側引張	σ_s (N/mm ²)	49	69	118	$\leq \sigma_{sa}$ (270N/mm ²) OK
直	フーチング	σ_c (N/mm ²)	_	3.4	3.4	$\leq \sigma_{ca} (10.5 \text{N/mm}^2) \text{OK}$
角	上側引張	σ_s (N/mm ²)	_	203	203	$\leq \sigma_{sa}$ (270N/mm ²) OK

表-6.3.5 レベル1地震時の曲げモーメントに対するフーチングの照査結果

(2) レベル1地震時のせん断力に対する照査

フーチングのせん断力に対する照査は、既設フーチングと増しフーチングの合計の断面で抵抗する ものとして照査する。

1) 照査位置および照査断面におけるせん断力

せん断力に対する照査断面を図-6.3.5に、レベル1地震時のせん断力を表-6.3.6に示す。

表-6.3.6 レベル1地震時のフーチングに作用するせん断力

		橋軸	方向	橋軸直角方向		
		下側引張	上側引張	下側引張	上側引張	
上載土砂	(kN)	-72	-238	-63	-233	
フーチング	(kN)	-200	-660	-175	-648	
杭頭の鉛直反力	(kN)	1,512	-894	1,377	-759	
合計	(kN)	1,240	1,792	1,139	-1,640	

2) レベル1 地震時のせん断力に対する照査結果

レベル1 地震時のフーチングのせん断力に対する照査結果を表-6.3.7 に示す。コンクリートに 発生する平均せん断応力度は、コンクリートのみで負担する許容せん断応力度以下である。

		橋軸	方向	橋軸直	角方向
		下側引張	上側引張	下側引張	上側引張
せん断力 S	(kN)	1,240	1,792	1,139	1,640
	幅 b (m)	8.00	8.00	7.00	7.00
部材寸法	高さ <i>h</i> (m)	2.00	2.00	2.00	2.00
	有効高さ <i>d</i> (m)	1.85	1.85	1.85	1.85
平均せん断応力	度 τ_m (N/mm ²)	0.08	0.12	0.09	0.13
軸方向鉄筋比	<i>pt</i> (%)	0.216	0.095	0.273	0.135
	C_e	0.873	0.873	0.873	0.873
コンクリート	C_{pt}	0.916	0.665	0.927	0.770
のみで負担す	<i>a</i> (m) 注1)	2.15	3.00	2.35	3.50
る許容せん断	C_{dc}	3.514	2.280	3.190	1.790
応力度	τ_{a1} (N/mm ²)	0.33	0.33	0.33	0.33
	$ au_{ac}$ (N/mm ²) $^{\pm 2^{)}}$	0.93	0.44	0.85	0.40
判 定		$\tau_m \leq \tau_{ac}$ OK	$\tau_m \leq \tau_{ac}$ OK	$\tau_m \leq \tau_{ac}$ OK	$\tau_m \leq \tau_{ac} \\ \text{OK}$

表-6.3.7 レベル1地震時のフーチングのせん断力に対する照査

注 1) 橋軸方向(上側引張) a = 2.150 + (1.70/2) = 3.00

橋軸直角方向(上側引張) a = 2.350 + (2.30/2) = 3.50

注2) $\tau_{ac} = C_e C_{pt} C_{dc} \tau_{a1}$

6.3.3 レベル2地震時の照査

(1) レベル2地震時の曲げモーメントに対する照査

鉛直死荷重による既設フーチングの応力度は比較的小さいことから、参考資料 ¹に準じ、レベル2 地震時に対する曲げモーメントの照査は、既設構造死荷重を含めた全荷重に対する曲げ耐力照査を行 うこととした。また、フーチングの曲げ耐力は、レベル1地震時と同様に、既設フーチングと増しフ ーチングの合計の断面で抵抗するものとして照査する。

1) レベル2地震時の杭頭反力

レベル2地震時の杭頭反力作用位置を図-6.3.6、杭頭反力の集計を表-6.3.8に示す。

図-6.3.6 杭頭反力作用位置

		フー	フーチング下側引張			フーチング上側引張			
		1列目	2 列目	3列目	5 列目	6列目	7 列目		
		STMP	既設杭	STMP	STMP	既設杭	STMP		
	杭頭の鉛直反力	960×4=	2014×3=	369×2=	-216×2=	-385×3=	-806×4=		
	(kN)	3,840	6,042 *	738	-432	-1,155 *	-3,224		
橋軸	杭頭の水平反力	159×4=	276×3=	115×2=	$\begin{array}{c} 115 \times 2 = \\ 229 \end{array}$	276×3=	115×4=		
方向	(kN)	637	827	229		827	458		
刀间	杭頭のモーメント	76×4=	171×3=	64×2=	64×2=	171×3=	64×4=		
	(kN・m)	303	514	129	129	514	257		
	杭頭の鉛直反力	955×4=	2177×3=	368×2=	-214×2=	-547×3=	-800×4=		
	(kN)	3,819	6,531 *	735	-428	-1,642 *	-3,200		
橋軸 直角 方向	杭頭の水平反力 (kN)	181×4= 724	312×3= 936	$128 \times 2=$ 255	$128 \times 2=$ 255	$305 \times 3 =$ 915	128×4= 511		
	杭頭のモーメント	95×4=	293×3=	80×2=	80×2=	269×3=	80×4=		
	(kN・m)	380	878	159	159	806	319		

表-6.3.8 レベル2地震時の杭頭反力の集計

※ 既設杭の杭頭鉛直反力は、既設構造による死荷重(5,446÷9=605kN/本)を加えた値である

2) フーチングに作用する曲げモーメントと曲げ耐力の照査

レベル2地震動によってフーチング照査断面に作用する曲げモーメント、曲げ耐力の照査結果 を表-6.3.9、図-6.3.7に示す。

			橋軸	方向	橋軸直角方向	
			フーチング	フーチング	フーチング	フーチング
	1		下側引張	上側引張	下側引張	上側引張
	上載土砂	(kN•m)	-506	-506	-512	-512
.11.) 19	増しフーチン	グ (kN・m)	-1,405	-1,405	-1,421	-1,421
曲げ モーメ ント	杭頭の鉛直反	〔力 (kN・m)	12,294	-7,747	14,538	-8,923
	杭頭の水平反	力 (kN・m)	-1,693	1,514	-1,915	1,681
	杭頭の曲げモ	ーメント($kN \cdot m$)	-946	900	-1,418	1,284
	曲げモーメント合計 (kN		7,744	-7,244	9,273	-7,891
	部材寸法	有効幅 b (m)	8.00	5.08	7.00	4.48
		高さ h (m)	2.00	2.00	2.00	2.00
		かぶり <i>do</i> (m)	0.15	0.15	0.15	0.15
曲げ		有効高 d (m)	1.85	1.85	1.85	1.85
耐力の	鉄筋量	_	$D25:63 \pm$ (3192210mm ²)	D29:22本 (1413280mm ²)	D29:55本 (3533200mm²)	D32:22 本 (1747240mm ²)
肥宜	欧仕曲げ	M_y (kN.m)	$16,\!225$	7,266	17,803	8,888
	年八曲り	判 定	$M \leq M_y$	$M \leq M_y$	$M \leq M_y$	$M \leq M_y$
			OK	OK	OK	OK
	1/2鉄筋釣合	$1/2Asb(mm^2)$	25,335,000	16,088,000	22,168,000	14,187,000

表-6.3.9 レベル2地震時の曲げモーメントに対する照査結果

(b) 橋軸直角方向

図-6.3.7 レベル2地震時における有効幅、鉄筋配置量

(2) レベル2地震時のせん断力に対する照査

レベル2地震時のフーチングのせん断力に対する照査は、曲げモーメントに対する照査と同様に、 既設フーチングと増しフーチングの合計の断面で抵抗するものとして照査する。

1) 梁としてのせん断力に対する照査

①照査位置および照査断面におけるせん断力

せん断力に対する照査断面を図-6.3.8に、レベル2地震時のせん断力を表-6.3.10に示す。

(a) 橋軸方向

(b) 橋軸直角方向

図-6.3.8 フーチングのせん断力に対する照査断面

		橋軸	方向	橋軸直角方向		
		下側引張	上側引張	下側引張	上側引張	
上載土砂	(kN)	-72	-238	-63	-233	
フーチング	(kN)	-200	-660	-175	-648	
杭頭の鉛直反力	(kN)	3,840	-3,224	3,819	-3,200	
合計	(kN)	3,568	-4,122	3,581	-4,081	

表-6.3.10 レベル2地震時のフーチングに作用するせん断力

②レベル2地震時のせん断力に対する照査結果

レベル2地震時のフーチングのせん断力に対する照査結果を表-6.3.11に示す。フーチングに作 用するせん断力は、コンクリートのみで負担するせん断耐力以下である。

		橋軸	方向	橋軸直角方向	
		下側引張	上側引張	下側引張	上側引張
せん断力 S	(kN)	3,568	4,122	3,581	4,081
	幅 b (m)	8.00	8.00	7.00	7.00
部材寸法	高さ <i>h</i> (m)	2.00	2.00	2.00	2.00
	有効高さ d (m)	1.85	1.85	1.85	1.85
軸方向鉄筋比	<i>pt</i> (%)	0.216	0.095	0.273	0.135
	C_e	0.873	0.873	0.873	0.873
	C_{pt}	0.916	0.665	0.927	0.770
コンクリートのカで各坦士	a (m) $^{\pm 1^{)}}$	2.15	3.00	2.35	3.50
のみて負担するせん断耐力	C_{dc}	3.514	2.280	3.190	1.790
	τ_c (N/mm ²)	0.33	0.33	0.33	0.33
	S_c (kN) $^{\pm 2^{)}}$	13,716	6,461	11,026	5,139
判 定		$S \leq P_s(S_c)$	$S \leq P_s(S_c)$	$S \leq P_s(S_c)$	$S \leq P_s(S_c)$
		OK	OK	OK	OK
沙1) 场盐十六		(70)	-2.00		

表-6.3.11 レベル2地震時のフーチングのせん断力に対する照査

注 1) 橋軸方向(上側引張) *a* = 2.150 + (1.70/2) = 3.00 橋軸直角方向(上側引張) *a* = 2.350 + (2.30/2) = 3.50

注 2) $S_c = C_e C_{pt} C_{dc} \tau_c b d$

2) 版としてのせん断力に対する照査 図・6.3.9 に示すように、せん断照査断面と柱前面の間に杭が存在するため、道示IVに準じ、版と してのせん断力の照査は省略する。

図-6.3.9 版としてのせん断照査断面